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1 Introduction

Since the late 1990s Regression Discontinuity (RD) designs have become an important method
in economics and related fields to estimate causal effects of an intervention, where assignment
of treatment is determined by an observed “assignment” variable. Although RD designs have
some advantages over other approaches such as matching on observables and IV methods, they
are not a panacea. As nearly every method in statistical inference, RD designs are vulnerable
to undisclosed multiple testing by dishonest scientists — part of what is called p-hacking in the
scientific community.

If a scientist with malicious intent uses a plethora of methods to estimate a discontinuity and
only presents the results that fit their intentions without acknowledging the multiple testing, the
presented results and the given confidence levels can differ wildly from the truth. In this thesis I
am going to analyse the effects of undisclosed multiple testing of hypotheses in regression dis-
continuity estimation. To do so, I am first going to give an overview on RD design and describe
a method to estimate a discontinuity parametrically. I am then going to present a simulation
framework in which the underlying data generating process (dgp) does not contain a disconti-
nuity. Using the estimates obtained in these simulations, I construct three “malicious-intent”
(MI) estimators that mimic the behaviour of dishonest scientists. These estimators described
in more detail in section 3 overestimate significance and/or effect strength and therefore can be
described as malicious since they are used to deceive the reader in some way or another.

2 Regression Discontinuity Design

Introduced by Thistlethwaite and Campbell (1960), Regression Discontinuity designs became
an important tool in analysing treatment effects in the 1990s. Applicable in settings where
the allocation of treatment is determined by an observed assignment variable according to a
threshold rule, they are useful as threshold rules are common in the real world. To give some
examples: passing a test at school, winning an election ((50−ε)% vs. (50+ε)% of voter share),
the Maastricht criteria or a minimum height to become an astronaut are thresholds, where it is
important on which side you find yourself.
To model these dependencies in a simple linear i.i.d. case one introduces a dummy variable
D ∈ {0,1} indicating on which side of the threshold a particular observation is situated into the
standard regression model. This results in Equation (1) as a dgp.

Yi = µ +Diτ +Xiβ + εi i = 1,2, . . . ,n (1)

Elements (Yj,D j,X j) of the observed sample {(Yi,Di,Xi), i = 1, . . . ,n} are i.i.d., εi is an error
term, Di = 1 if Xi ≥ c and Di = 0 if Xi < c. X is the assignment variable and c is the threshold
which decides whether an individual receives treatment.
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For this to fulfil the assumptions of the classical regression model following chapter one of
Hayashi (2000), I additionally specify strict exogeneity,

E[εi|D1, . . . ,Dn,X1, . . . ,Xn] = E[εi|Xi] = 0 i = 1,2, . . . ,n (2)

no multicollinearity (simplified for the univariate case shown above),

rank(X) = 3, with X=


1 D1 X1
...

...
...

1 Dn Xn

 ∈ Rn×3 (3)

and mean-independence of Xi and εi

E[Xi|εi] = E[Xi] and E[εi|Xi] = E[εi] i = 1,2, . . . ,n (4)

to allow for a causal interpretation of τ̂ .

A case like this is called a sharp RD design, since receipt of treatment is decided strictly accord-
ing to the threshold. A visualisation for sharp RD design can be seen in Figure 1. As shown
there, the probability of receiving treatment jumps from 0 to 1 at c = 0.
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Figure 1: Visualisation for Sharp Regression Discontinuity

In practice, models like this could describe a situation, where all individuals for which X ex-
ceeds c are assigned to the treatment group and individuals with a value of X lower than c

are assigned to the control group. Similarly to the standard regression framework, this can be
extended to allow for heteroskedasticity and multiple covariates.
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For the mathematical description of sharp RD designs and Potential Outcomes given below I
follow Lee and Lemieux (2010) and Guido W. Imbens and Thomas Lemieux (2008). There are
requirements for the usage of an RD framework: the most important being smoothness around
the threshold and unconfoundedness. First, all factors other than the treatment dummy must in-
fluence the outcome variable smoothly around the threshold. This is motivated by the idea, that
individuals in the proximity of the threshold should be comparable even if they are on opposite
sides of it to allow for reasonable interpretation of the estimated discontinuity. Since this thesis
will only cover the case, where only the assignment variable X systematically influences Y , I
am going to limit my description to the univariate case in the following. Mathematically this
can be visualized using the so-called Potential Outcomes framework.
Imagine that for each value of X there are two expected values of Y :

• One if the individual receives treatment E[Y |X = x,D = 1] =: E[Y (1)|X = x]

• One if it does not E[Y |X = x,D = 0] =: E[Y (0)|X = x]

Then the expected value of Y given X can be written as shown in Equation (5).

E[Y |X = x] = Prob(D = 1|X = x)E[Y (1)|X = x]+Prob(D = 0|X = x)E[Y (0)|X = x] (5)

But for each value of X we only ever observe data generated by one of those functions.

E[Y(1)|X] - unobserved since X < c

E[Y(1)|X] - observed since X ≥ c

E[Y(0)|X] - observed since X < c

E[Y(0)|X] - unobserved since X ≥ c
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Figure 2: Visualisation for Potential Outcomes Framework

Second, we need unconfoundedness, described in mathematical terms in Equation (6).

Y (0), Y (1)⊥ D|X (6)
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This is trivially fulfilled since conditional on X the variance of D is zero. In the case of sharp
RD design the average causal effect can be estimated because of the relationship shown in
Equation (7), if one assumes unconfoundedness and smoothness of the underlying functions
E[Y (0)|X = x] and E[Y (1)|X = x] as described above. Estimation of the average causal effect τ

at c using the procedures described later is then motivated as shown below.

τ = E[Y (1)|X = c]−E[Y (0)|X = c] = lim
x↓c

E[Y (1)|X = x]− lim
x↑c

E[Y (0)|X = x] (7)

= lim
x↓c

E[Y |X = x]− lim
x↑c

E[Y |X = x]

If the receipt of treatment is not decided strictly according to a threshold in an observed variable,
but there is still a jump in the probability of receipt of treatment at c, this is called fuzzy RD
design. An example can be seen in Figure 7 in the appendix. As shown there, the probability
of receiving treatment still jumps at c = 0 but not by 1 and therefore treated individuals can
be found on the left as well as untreated individuals on the right of the threshold. There are
some differences compared to the estimation procedures addressed later, since not only the
discontinuity in Y has to be estimated but also the discontinuity in the probability of treatment.
In this thesis I am not going to address fuzzy RD designs.

3 Malicious Intent and Multiple Testing

To motivate the idea of multiple testing, think of a simple Gauss test at a significance level
of 5% for the null hypothesis H0 : θ1 = 0 for some parameter θ1 estimated by θ̂1. Under
the null, one would expect that θ̂1 deviates from 0 in a statistically significant way in 5% of
cases. Imagine now, that there are multiple parameters θ1, . . . ,θK for which similar tests are
conducted. Each test creates false positives in about 5% of cases1 and there is often no reason
to assume perfect correlation of those false positives between tests. Therefore, the probability
of obtaining at least one false positive, called the family-wise error rate (FWER), is likely larger
than 5%. In many contexts it would be reasonable to adjust α to ensure that the FWER is
smaller than or equal to 5%. A similar problem arises testing the same hypothesis multiple
times for estimates created by different specifications of the functional form. Assuming that
different specifications each generate false positives in about 5% of cases and assuming that
these are not perfectly correlated, the fraction of false positives is inflated if one only reports
the estimates fitting a narrative best.
Suppose one wants to test n hypotheses by n independent tests at a significance level α . Let
fpn,α describe the expected number of false positives in this scenario.

Then it is easy to see that Equation (8) holds.

fpn,α = 1− (1−α)n (8)

1Meaning that the null is falsely rejected.
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For α = 0.05 this leads to the following values: (rounded for n≥ 2)

n 1 2 3 4 5 10 25 50 75 100

fpn,0.05 0.05 0.0975 0.143 0.185 0.226 0.401 0.723 0.923 0.979 0.994

Table 1: Expected fraction of false positives for independent tests at α = 0.05

There are multiple ways to correct for these problems, the easiest and most well known being
the Bonferroni correction introduced by Dunn (1961). The basic idea is to divide the chosen
level of significance α by the number of tests. This more restrictive level of significance is used
to test each null hypothesis to ensure that the FWER is smaller or equal to α .
There are different methods to estimate a discontinuity in an RD setting and sometimes many
functional specifications for each of those estimators. This indicates the possibility of problems
like multiple testing or p-hacking in this context. Imagine a ruthless scientist trying to find
a discontinuity where in reality there is none. They could use a multitude of estimators and
tests, then only report the results fitting their narrative. Given the calculations above, the more
specifications they use, the more likely it might be that they might find a significant result.

3.1 Simulated Data and Monte Carlo Method

To test the effects of multiple testing in a sharp RD setting, I deliberately chose a setting without
a discontinuity, namely data as described below.(

Xi

Yi

)
i.i.d. with Xi ∼ uni f (−1,1), Yi ∼N (0,1) and Xi ⊥ Yi i = 1,2, . . . ,n (9)

I then searched for a discontinuity at c = 0. Therefore, the typical null hypothesis in these
scenarios τ = 0 is true. I did this to conduct a Monte-Carlo-Simulation on the properties of three
“malicious-intent” (MI) estimators under the null. These estimators are constructed to mimic
the behaviour of dishonest scientists using covert multiple testing to their personal advantage.
Developed in the 1930s and 1940s by Enrico Fermi, Stanislaw Ulam, and John von Neumann
during the Manhattan project, the Monte Carlo method uses randomness to its advantage if the
derivation of exact results is unfeasible.

As Shonkwiler and Mendivil (2009) put it:

”The Monte Carlo method is a technique for analyzing phenomena by means of

computer algorithms that employ, in an essential way, the generation of random

numbers.”

5



To give an idea of the procedure, imagine an estimator with unknown properties for a given
sample size n. To obtain information on the distribution of its properties, one could calculate
the estimator for m random samples. For m→ ∞ the empirical distribution will converge to the
theoretical distribution, therefore making arbitrarily precise estimates of its properties possible.
When talking of p-values in the following I refer to the p-value of the null hypothesis that τ = 0
for a specific estimate. My simulation to study the MI estimators consisted of m = 10000 data
sets with n = 1000 observations each.

3.2 “Wanna be certain” - MI1 Estimator

The first MI estimator is constructed to only report the estimate corresponding to the lowest p-
value out of a set of estimates. Mathematically, for a set of K estimates τ̂k and K corresponding
p-values pk, MI1 is calculated as shown below.

MI1({(τ̂k, pk) : k = 1, . . . ,K}) = (τ̂ j, p j) where j = argmin
k=1,...,K

pk (10)

I call this estimator the “Wanna be certain” estimator with a bit of irony since people often
confuse the p-value with the probability of H0 being true. Therefore, people might use these
estimates to argue that it is very unlikely that there is no discontinuity, even though this is not a
rational claim. In the following this estimator will be abbreviated as MI1.

3.3 “Talk Show” - MI2 Estimator

The second MI estimator is constructed, in a way that it always reports the largest estimate in
absolute terms for the discontinuity. For a set of K estimates with K corresponding p-values,
the MI2 Estimator as defined as described below.

MI2({(τ̂k, pk) : k = 1, . . . ,K}) = (τ̂ j, p j) where j = argmax
k=1,...,K

|τ̂k| (11)

I gave MI2 the name “Talk Show” estimator as pure effect size is more relevant in some contexts.
One example could be a talk show, where a big number might be more impressive to spectators
than a more reasonable, statistically significant estimate. But in some scientific contexts creating
an impressive narrative might be more important than statistical rigour too. An example could
be policy advice, where stories of huge benefit or crippling damage might be more influential
than precise mathematical argumentation. In the following this estimator will be abbreviated as
MI2.

3.4 “p-Hacking” - MI3 Estimator

The third MI estimator is inspired by p-hacking and reports the estimate with the highest effect
size out of all significant estimates.
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So given a set of K estimates with K corresponding p-values, MI3 is defined as follows:

MI3({(τ̂k, pk) : k = 1, . . . ,K}) =

{
(τ̂l, pl), if {pk : pk ≤ 0.05 for k = 1, . . . ,K}= /0
(τ̂ j, p j), otherwise

(12)

where j = argmax
k=1,...,K with pk≤0.05

|τ̂k| and l = argmax
k=1,...,K

|τ̂k|

I call this the “p-Hacking” estimator, since its construction is motivated by the same incentives
that lead to p-hacking in parts of modern science. In publishing the p-value is often only relevant
up to a point — a study might only be published if the reported p-value is smaller than 0.052.
Its exact value might not be relevant after that. Therefore, a ruthless scientist might want to
report the maximum effect strength out of all significant estimates to maximize the perceived
importance of their findings. In the following this estimator will be abbreviated as MI3.

3.5 One-sided Modification of the Malicious Intent Estimators

In some settings dishonest scientists might only be interested in reporting findings with a spe-
cific sign or direction. This could be motivated by political intentions or other personal motives.
To reflect this, I define a set of modified MI Estimators only looking for positive discontinuities
τ ≥ 0 without loss of generality due to the underlying symmetry in the dgp. In mathematical
terms these MI+ Estimators can be written as shown below.

MI1+ ({(τ̂k, pk) : k = 1, . . . ,K}) =

{
(τ̂l, pl), if {τ̂k : ∀k ∈ {1, . . . ,K} with τ̂k ≥ 0}= /0
(τ̂ j, p j), otherwise

(13)

where p j = min{pk : ∀k ∈ {1, . . . ,K} with τ̂k ≥ 0} and l = argmax
k=1,...,K

τ̂k

MI2+ ({(τ̂k, pk) : k = 1, . . . ,K}) = (τ̂ j, p j) where j = argmax
k=1,...,K

τ̂k (14)

MI3+ ({(τ̂k, pk) : k = 1, . . . ,K}) =

{
(τ̂l, pl), if {pk : pk ≤ 0.05 for k = 1, . . . ,K}= /0
(τ̂ j, p j), otherwise

(15)

where j = argmax
k=1,...,K with pk≤0.05

τ̂k and l = argmax
k=1,...,K

τ̂k

For MI3+ one could argue about the relative importance of positivity and significance. As can
be seen in the construction of MI3+ I chose to prioritize significance over positivity to reflect
the importance of p-values in publishing. Different choices could be reasonable.

2One could argue that this in itself is a discontinuity that could be studied using RD designs.
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4 Estimation of Sharp Discontinuities

Since these MI estimators need a set of estimates to choose from, I used a number of Ordinary
Least Squares (OLS) estimators with different specifications of the functional form to estimate
the discontinuity. I did so, since OLS is the best linear unbiased estimator for data generated by
a dgp like the one used in this thesis. In other settings it might be more appropriate to choose
different estimators, for example non-parametric approaches, which I will shortly address in
the outlook. To increase the number of specifications of the functional form, I started with a
constant specification and added powers of x to the regression. Choosing powers of x instead
of other terms such as logarithms or trigonometric functions is reasonable, since sufficiently
smooth functions can be expressed as a power series, called the Taylor series of that function.
Including powers up to K gives us an approximation of the function called its Taylor polyno-
mial of degree K. I stopped adding higher powers at x6 since R reported a violation of the rank
condition when adding x7 to the regression model. This is a well known property3 which is
studied in numerical mathematics and will not be addressed further in this thesis.
Nevertheless, it is possible to add higher powers of x to the regression. For example, using
Legendre polynomials instead of powers of x makes it possible to include powers up to n−2 to
the regression as these are orthogonal by definition. With enough computational resources this
could be a way to study the properties of the MI estimators when using equivalents of higher
K in the regression model. Other approaches such as using a Fourier series as theoretical mo-
tivation might also be reasonable if the context is appropriate4 and could be studied in another
simulation.

One important property of these estimators is that they are unbiased. Therefore, I am going
to ignore errors because of an incorrect specification of the functional form in the following
analysis. To estimate the discontinuity I used a pooled regression (in the sense, that I estimated
the regression on both sides of the threshold in one step) for each specification of the functional
form. The advantage of this approach compared to estimating both sides independently is that
it delivers standard errors using standard OLS theory. I allowed for differing constants and
slope parameters on different sides of the threshold since E[Y (1)|X = x] and E[Y (0)|X = x] do
not necessarily have to share these characteristics. There are some points that can be made for
restricting these parameters to match across treatment and control group, but aside from special
cases (where it is theoretically justified) the standard approach is not to restrict them. This is
done to ensure that estimates of Y on the left of c only rest on observations to the left of c and
vice versa as implied by Equation (7).

From now on K signifies the order of the polynomial specification of one specific estimator
while J refers to the highest order of polynomial estimator included in the calculation of the MI
estimators. As a special case K = 0 refers to the estimator with constant specification and J = 0
refers to the case where only the constant estimator is included.

3Not specifically of x7 but the general approach of adding powers of x to a regression.
4For example in a time series context where cyclicity might reasonably be assumed.
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4.1 OLS Estimator with Constant Specification

Using the OLS estimator described above while including only constant terms is equivalent
to calculating the arithmetic mean on the left and right of the suspected discontinuity. The
estimate for the discontinuity is the difference of those means. Equation (16) describes the
estimated relation.

Y = α̂ +Dτ̂ + ε̂ (16)

If one would stop testing after this step or limit the analysis to any other value of K, there would
be no problem of multiple testing, but it would also be unlikely (5%) that one would find a
discontinuity that significantly differs from zero.

4.2 OLS Estimator with General Polynomial Specification

Similar to the constant approach this is equivalent to estimating an OLS regression including
powers of x up to a limit K on either side of c = 0 and then to calculate the difference of those
regressions at zero.

Y = α̂ +
k

∑
i=1

β̂l,iX i +Dτ̂ +D
k

∑
i=1

(β̂r,i− β̂l,i)X i + ε̂ (17)

Looking at the underlying dgp each of these functional forms is correctly specified, which re-
sults in a Bias of zero. Nevertheless, due to randomness, the estimators find large discontinuities
in some data sets, especially for higher order polynomials due to the increased variance. The
maximum discontinuity for each specification including constant is shown in Figure 6 in the
appendix. Comparing the estimates created by estimators for different choices of K gives an
overview of what the MI estimators get to work with in this thesis.
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Figure 3: Estimated Densities for Discontinuities and p-values by order of Polynomial
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Figure 3 shows the estimated densities of the discontinuity estimates for different choices of K

in the left panel5 and the estimated densities for the p-values in the right panel. Since the latter
are bounded to [0,1] I used a density estimator for bounded data provided by the R package
bde6. As expected the estimated discontinuities show a bigger variance for higher orders of
polynomial specification and the p-values approximately follow a uniform distribution on [0,1]
under the null. As a comparison, Figure 8 shows the histograms for the p-values of each speci-
fication which also point to a uniform distribution.

K / K 0 1 2 3 4 5 6
0 1 0.15 0.0764 0.0342 0.0202 0.00368 0.00927
1 0.501 1 0.316 0.169 0.0982 0.0684 0.0579
2 0.344 0.671 1 0.415 0.248 0.162 0.117
3 0.253 0.504 0.742 1 0.489 0.315 0.231
4 0.201 0.405 0.589 0.789 1 0.562 0.375
5 0.169 0.336 0.492 0.656 0.831 1 0.608
6 0.141 0.291 0.421 0.565 0.708 0.855 1

Table 2: Correlation between |τ̂| for different K (purple) and p-values of different K (green)

Table 2 shows the correlations between discontinuity estimates created by estimators for differ-
ent K under the main diagonal and correlations between p-values for estimates created by those
estimators above the main diagonal. Overall the correlation seems to be a relevant factor and
might lead to a slowdown in the increase of false positives with increasing J, since additional
specifications are increasingly correlated with the ones calculated before. As shown there too,
correlation between estimates for k′ and k′+1 seems to be increasing as k′ increases. The same
can be observed for the corresponding p-values, indicating that the postulated slowdown in the
increase of false positives gets stronger as J increases. This could be an interesting subject to
study in another simulation for higher values of K. This could be used to analyse the effects on
the MI estimators for larger values of J too. It might be possible that for J = n−2 (the highest
order that can possibly fulfil the no-collinearity condition) the fraction of false positives does
not go to one as n→ ∞.

K 0 1 2 3 4 5 6

correlation coefficient -0.946 -0.951 -0.95 -0.947 -0.941 -0.942 -0.938

Table 3: Correlation between |τ̂| and their corresponding p-values for different K

As Table 3 shows, the correlation for each chosen value of K between |τ̂| and its correspond-
ing p-value is close to −1. This means that false positives are typically generated by large
discontinuity estimates motivating similarities between MI1 and MI3, and MI2.

5Due to the nature of these estimators I mirrored the estimates at zero to obtain a more precise estimate.
6https://cran.r-project.org/web/packages/bde/index.html
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Figure 4: Estimated Densities for significant Discontinuity Estimates

Figure 4 shows density estimates for only the significant realisations of the OLS estimators for
K = 0, . . . ,6. These are interesting from a practical standpoint since a scientist with malicious
intent might only publish significant results, as explained before. Therefore, these distributions
and those realised by the significant estimates chosen by the MI estimators might be more
relevant for the effects on published science in the real world.
As can be seen there, each density is bimodal, which makes sense, since only the absolute
value of the estimated discontinuity is relevant for its p-value but not its sign. Since the peaks
of the distributions wander outwards as K increases, there might be a possibility to identify
peaks caused by certain underlying estimators in the significant estimates chosen by the MI
estimators. Additionally, this identification idea could be supported using the decomposition by
chosen polynomial order K for each MI estimator. A theoretical analysis of these distributions
seems feasible and could be an approach to derive theoretical distributions of the MI estimators
constructed in this thesis.

4.3 Findings for MI Estimators

Calculating the MI estimators described in section 3 for the estimates created by these polyno-
mial OLS estimators (K = 0, . . . ,6) gives an idea of what effects undisclosed multiple testing
might have on published science. In the following I am going to describe the observed proper-
ties of the MI estimators. First I will look at the observed fraction of false positives for sets of
included estimators with polynomial specification up to order J, shown in Figure 5 and Table
4. If these were to differ systematically from 5%, this would be a first indicator of problem-
atic behaviour connected to multiple testing. Then I am going to address the MI estimators
individually.
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n (J) 1 (0) 2 (1) 3 (2) 4 (3) 5 (4) 6 (5) 7 (6)

fpn,0.05 0.05 0.0975 0.143 0.185 0.226 0.265 0.302

MI1 and MI3 0.0516 0.0925 0.1236 0.1471 0.1716 0.1904 0.2068

MI2 0.0516 0.0755 0.0892 0.0943 0.1061 0.1116 0.1161

Table 4: False Positives for the MI Estimators at α = 0.05

The term assumed independence in Figure 5 relates to Equation (8) for α = 0.05. From a
theoretical standpoint, it is clear, that the fraction of false positives of MI1 and MI3 have to be
identical, since each would choose an estimate with a p-value smaller than 0.05 if one exists.
As can be seen in Figure 5 and Table 4 the quota of false positives is increasing with J for all
MI and MI+ estimators. Due to correlation between the estimates created by the underlying
OLS estimators, the increase is slower than the assumption of complete independence predicts.
Compared to MI1 and MI3, MI2 creates fewer false positives, which is expected since large
estimates as chosen by MI2 do not necessarily have to be significant. As Table 3 only shows
the in-estimator correlations of estimates and p-values, these do not contradict this observation.
MI1 and MI3 will choose a significant estimate whenever there is one, a feature that MI2 does
not share by construction. MI2 showing a smaller fraction of false positives could indicate that
unusually large estimates are rarely responsible for false-positives.
These observations motivate the idea that a correction of α derived from the assumption of
complete independence might be conservative especially for large values of J. Studying the
joint distribution of these discontinuity estimates from a theoretical standpoint and creating an
appropriate correction for the choice of α could be an interesting next step. An outline is given
in section 9.5.
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MI1 Estimator As shown in Figure 12, MI1 starts to show a bimodal nature for J ≥ 1 due
to its symmetric construction. The estimated density gets flatter and wider as J increases, as
well as the modes getting farther away from zero. This makes sense since MI1 includes estima-
tors for higher values of K which show a larger variance. Restricting the analysis to the false
positives as shown in Figure 13, MI1 gains another interesting feature as for J = 1 the density
clearly shows two modes on either side of zero. These could correspond to the two underlying
estimators, a hypothesis that is supported by Figure 4. This clarity is lost for higher values of J

but the overall structure seems to support the idea. As J increases the estimated density of the
false positives gets wider and flatter. Around zero the behaviour is contrary to this observation.
Here the density increases with J.
As can be seen in Figure 10 the estimates created for K = 0 continuously account for the largest
share of estimates chosen by MI1, which could be explained by the limited correlation of p-
values for estimates created for small values of K with other p-values. Therefore, the relative
importance of K = 0 in MI1 could be expected to be relatively stable. Overall the decomposi-
tion by order of the chosen estimator is rather flat compared to the ones for MI2 and MI3 and
seems to approach a uniform distribution as J increases. This is reasonable since under the null,
the p-values of each underlying estimator should approximately follow a uniform distribution
on [0,1] and therefore have the same probability of delivering the smallest p-value. The dif-
ference to MI2 and MI3 can also be linked to the limited correlation of p-values for different
estimators compared to the larger correlation between the corresponding estimates. In the case
of MI1 restricting the analysis to the significant observations does not change the decomposi-
tion by chosen polynomial estimator meaningfully, indicating that false positives are generated
proportionally by the chosen estimators.
Looking at the histograms for the p-values created by different J in Figures 14 and 15 I observe
that the histograms for MI1 become increasingly right skewed as J increases. A feature that dis-
tinguishes MI1 from the other MI estimators is, that this histograms indicate a convex density
for the p-values reported by MI1. Overall the histograms hint to severe problems of multiple
testing as these do not approximate a uniform distribution on [0,1] as would be expected under
the null.

MI2 Estimator As expected since the correlations in Table 3 are close to −1, the overall
shape and development with increasing J of MI2 is similar to the one of MI1. The strong cor-
relations mean, that out of the set of estimates created for a value of K, similar estimates are
chosen by both MI1 and MI2. In the following I am therefore going to address the differences
in Figures 10 to 15 between MI1 and MI2.
Compared to MI1, the density of MI2 is wider and its modes are farther out, which is ex-
plained by its construction. Where MI1 chooses the smallest p-value, MI2 chooses the largest
effect size. Even though those are correlated, differences such as those shown by Figure 12
are expected. Looking at the distribution of false positives, MI2 shows a wider density which
is reasonable due to the same explanation. For J = 1 the distribution again seems to show a
differentiation into two modes on either side of zero. In this case the inner bump is smaller
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— exactly opposite as in the case of MI1. This is consistent with Figure 4 and the findings of
Figure 11. In case there are multiple significant estimates to choose from, it is likely that the
largest was created for a high value of K. Comparing the decompositions by chosen estimator
for the significant estimates (Figure 11) further supports this idea, since out of the false posi-
tives reported by MI2, large portions are chosen from estimators corresponding to higher K. A
similar pattern emerges for the complete set of estimates by MI2 as Figure 10 shows. K = J is
always the estimator chosen most often. This can be explained by the increasing variance of the
underlying estimators as K increases.
Due to these properties it seems reasonable to assume that the modes closer to zero correspond
to K = 0. For higher values of J this pattern is not obvious, but further theoretical analyses
could be made to describe the resulting distribution of false positives. One hypothesis could be
that for each increase in J the distribution for J− 1 is overlaid by a component for K = J and
rescaled with a large weight on the latter.

MI3 Estimator Due to its two-stage definition MI3 shares properties of both MI1 and MI2.
Looking at Figures 10 and 12 shows that MI3 seems to behave very similar to MI2 both in
density and in its choice of underlying estimators. But important differences start to emerge
when looking at the false positives — not only does MI3 produce by far more false positives as
Table 4 shows, the density of its false-positives and the decomposition by chosen polynomial
estimator for significant results show strong differences.
As Figure 13 shows, the estimated density of the reported false positives is quite similar to the
one for MI1. But especially for lower values of J such as J = 1 to J = 3 the densities seem to
be more flat. By flat I mean that compared to MI1 and MI2 which had opposite weights on the
peaks depicted in Figure 4, these seem to be more evenly weighted for MI3. This is reasonable
when contrasted with Figure 11, where the decomposition of MI3 seems to mix characteristics
of those for MI1 and MI2.
Looking at the histograms for the p-values of chosen estimates in Figures 14 and 15 shows that
as with the other characteristics, MI3 exhibits features of MI1 for significant estimates, creating
many false positives — with the exception that MI3 shows more estimates in the bin to the
left of 0.05 than in the utmost left bin. This indicates some sort of trade-off: choosing higher
p-values to increase reported effect size. This behaviour can be found in the definition of MI3.
For the insignificant choices MI3 once again mimics the behaviour of MI2 which is reasonable
since their definitions match for the case of no significant estimators to choose from. As these
outweigh the significant choices by far, these similarities translate to the overall estimator.
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4.4 Findings for One-Sided MI Estimators

The same analysis conducted above for the two-sided MI estimators can be applied to the one-
sided MI estimators. In this case due to the nature of the estimators, which essentially discard
half of the estimates due to negativity, the expected fraction of false positives is also halved.
Since the MI estimators might not be able to choose a positive estimate for small values of J

this idea only holds approximately. For large values of J, due to the increasing correlation with
increasing K, the same idea applies by a slightly extended argument. Therefore, halving the
theoretical value for complete independence is only a guideline and cannot be used as freely as
in the two-sided case.

n (J) 1 (0) 2 (1) 3 (2) 4 (3) 5 (4) 6 (5) 7 (6)
1
2 fpn,0.05 0.025 0.0486 0.071 0.093 0.113 0.132 0.151

MI1+ 0.0516 0.0596 0.071 0.0827 0.0949 0.1025 0.1108

τ̂ ≥ 0 0.0266 0.0473 0.0633 0.0766 0.0903 0.0988 0.1072

MI2+ 0.0516 0.0504 0.0533 0.0571 0.0638 0.0657 0.0695

τ̂ ≥ 0 0.0266 0.0381 0.0456 0.051 0.0592 0.0620 0.0659

MI3+ 0.0516 0.0519 0.0652 0.0776 0.909 0.992 0.1074

τ̂ ≥ 0 0.0266 0.0473 0.0633 0.0766 0.903 0.0988 0.1072

Table 5: False Positives for the One-Sided MI Estimators at α = 0.05

As Figure 5 and Table 5 show, the one-sided variants behave more tame in terms of the fraction
of false-positives they report. Due to their nature of essentially dictating a direction of the ef-
fect, this is expected and cannot really be taken as a redeeming quality due to its implications
for other properties of the estimators for example their non-zero bias.
Nevertheless, as in the two-sided case, the fraction of false positives increases as J increases.
Again the rate is significantly slower than for the case of independent tests. This can be ex-
plained by the same logic as before by looking at the correlation between estimates and p-values
of estimators for different values of K. Restricting the false-positives to be positive, as might
reasonably done due to the real life motivation of this modification, has interesting effects on
the fraction of false positives. Where the difference is quite large for small values of J, the
difference quickly approaches zero as J increases, indicating that although estimates are in-
creasingly (positively) correlated as K increases, the one-sided MI estimators are able to choose
positive estimates nearly exclusively for even relatively small values of J. Compared to their
two-sided equivalents the increase in false positives as J increases is even slower, motivating
the idea that the effectiveness of increasing J to achieve false positives is quite limited for these
Estimators. The observation that the correlation between estimators for K = k′ and K = k′+1
quickly increases with k′ supports this idea, since the additional estimators become increasingly
correlated as J increases.
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MI1+ Estimator As with the two-sided MI estimators, their one-sided counterparts share
their overall shape as Figure 18 shows. The density estimates for MI1 show a strong right
skewness which increases with J. Due to their construction, the density is unimodal with the
mode being situated slightly to the right of zero and getting farther away from zero as J in-
creases. This can be explained looking at Figure 16, as the decomposition of MI1+ by chosen
polynomial estimator shows that K = J continuously accounts for the second largest share of
chosen estimates. Therefore, estimators with a larger variance are included as J increases, flat-
tening the density and giving more weight to the tails. As seen for MI1 before, the largest share
is continuously chosen from K = 0 with an analogous explanation as in the two-sided case.
Looking only at the significant estimates, Figure 19 shows an interesting feature of the one-
sided MI estimators. For small values of J there is a mode to the left of zero created by data sets
where no positive estimate was generated. This mode quickly shrinks as J increases, once again
showing that although the estimates for different values of K are correlated, higher values of J

lead to a higher fraction of data sets showing at least one positive estimate. The peak to the left
of zero does not seem to change position as J increases motivating the idea that it corresponds
to a single estimator. Comparison to Figure 4 could indicate that this peak corresponds to K = 0
as their position is similar.
To the right of zero, one finds a similar pattern to the two-sided variant. For small values of J

there are J+1 clearly separated modes which probably correspond to the underlying estimators.
This feature is not clear for higher J as the distribution becomes wider and flatter. Figure 17
shows strong similarity to Figure 16 for MI1+ indicating a proportionality between the chosen
estimators and the observed false positives. Looking at Figures 20 and 21 shows a similar pat-
tern to the two-sided MI1 estimator. Once again the distribution is right skewed and convex.
However, the distribution is less skewed than for the two-sided MI1, which can be explained by
the points made for the fraction of false positives at the beginning of section 4.4.

MI2+ Estimator Once again, I am going to elaborate on the differences between MI2+ and
MI1+ as they share many properties. Compared to MI1+ the density estimates for MI2+ are
flatter overall and show a larger share of estimates with a comparatively large effect size as
shown in Figure 18. The density estimates for the significant realisations of MI2+ shown in
Figure 19 exhibit a similar pattern to MI1+ with an analogous distinction to the one observed
for their two-sided equivalents. Where MI1+ has its peak relatively close to zero, MI2+ peaks
at larger values.
This can be explained looking at the decomposition by chosen polynomial estimator and Figure
4. MI2+ prefers estimates created by the estimator for the highest K as these often produce the
larger estimates due to their increased variance. This pattern is also present for the significant
results, explaining the shifted peaks. As expected, the histogram of the p-values is still right
skewed as Figures 20 and 21 show, but compared to MI2, the skewness develops far slower with
increasing J which follows analogously to MI1+.
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MI3+ Estimator As in the two-sided case MI3+ combines properties of both MI1+ and
MI2+. Its overall density is very similar to MI1+ and the density of its false positives (es-
pecially when focussing on positive values) is more evenly spaced than either MI1+ or MI2+
as shown in Figures 18 and 19. As in the other cases this is reasonable due to the more even
distribution of chosen estimators for the false positives shown in Figure 17. The decomposition
by chosen K of the complete set of estimates reported by MI3+ again mimics the one of MI2+
as can be seen in Figure 16.
Its p-values unsurprisingly show a strong inflation of false positives as explained under Table 5.
Apart from that its behaviour is similar to the one described for MI1+ and MI2+ with the ex-
ception that p-values slightly larger than 0.05 seem to be under-represented compared to MI2+
even if one considers rescaling.7 A cause for this could be that the selection criteria of MI3+
filter out estimates corresponding to different p-values with different intensity. An explanation
could be that due to the correlation in effect size and p-value, these estimates are not likely to
be chosen if there is no significant estimate as they likely correspond to smaller discontinuity
estimates.

5 Modifications

To find out how modifications of the dgp influence the properties of the MI estimators I gener-
alize Definition (9), so that it allows for heteroskedasticity and a better control of outliers. To
do so I specify Definition (18).(

Xi

Yi

)
i.i.d. with Xi ∼ uni f (−1,1), Yi ∼

{
F1 with probability pi

F2, otherwise
(18)

where E[Yi] = 0, pi = f (xi) ∈ [0,1] and Xi ⊥ Yi i = 1,2, . . . ,n

Now Definition (9) is a special case where F1 =N (0,1) and pi = 1 ∀i= 1, . . . ,n. To estimate
parameters correctly for these more general processes it is necessary to use robust standard
errors. To do so I used the R libraries sandwich8 and lmtest9.

5.1 Heteroskedastic Error Terms

I generated two additional sets of data representing two opposite forms of heteroskedasticity. In
both cases I chose F1 = N (0,1) and F2 = N (0,5) but used different functions to determine
the probability pi. The first data set shows a hourglass pattern as pi = f (xi) = |xi|, so the
variance increases with increasing distance from the suspected discontinuity. The second data
set mimics a diamond shape since pi = f (xi) = 1−|xi|, so the variance is larger in proximity of
the suspected discontinuity. Figures for both of these dgps can be found in section 9.6.

7This effect can be seen even better for heteroskedastic data as shown in Figure 29.
8https://cran.r-project.org/web/packages/sandwich/index.html
9https://cran.r-project.org/web/packages/lmtest/index.html
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5.2 Adding Outliers as a Special Case of Heteroskedasticity

To add outliers the dgp given in Definition (18) can also be used. Again F1 = N (0,1),
but F2 = N (0,10). To generate outliers far away from the suspected discontinuity I chose
pi = f (xi) = 0.01|xi| and pi = f (xi) = 0.01(1−|xi|) to generate outliers close to the threshold.
Looking at data generated by these processes, a practitioner observing these patterns might not
choose to use robust standard errors. Instead, they might assume homoskedastic error terms and
outliers for unrelated reasons. Nevertheless, to stay true to the dgp I chose to test this scenario
using robust standard errors as well. A different approach might reasonably be assumed and
could be studied in further simulations. Figures for both dgps can be found in section 9.7.

5.3 Findings for Heteroskedastic Error Terms

For Section 5.1 — Heteroskedasticity Increasing the variance in the proximity of zero (Diamond-
Process) unsurprisingly increases the variance of the underlying OLS estimators, whereas an
increase in the variance away from zero (Hourglass-Process) does the same but less strong.
Because of that, I am first going to focus on the former. The effects are as expected — both
MI1 and MI1+ change slightly, but since the distribution of the p-values of the underlying es-
timators does not seem to be influenced, the effects are limited to a widening in the reported
density estimates. MI2 and MI3 change their behaviour significantly as their selection criterion
is directly affected. As Figures 26 and 27 show, the choices are more biased towards estimators
with a higher value of K. This is reasonable due to the larger increase in variance exhibited by
estimators for higher K. Increasing the variance away from zero (Hourglass-Process) strongly
decreases the correlation between estimators of different K, increasing the overall number of
false positives generated by the MI estimators as shown in Figure 31 and Table 8.

For Section 5.2 — Outliers As Figures 33 and 38 show, adding outliers to the process as
described before also widens the distribution of the underlying estimators. Adding them far
away from c reduces correlation between estimators as described for the Hourglass-Process in
addition to the effects of widening the underlying distributions. Adding estimators close to zero
additionally influences them differently. As the right panel of Figure 33 shows, the p-values
do not seem to follow a uniform distribution on [0,1] under the null. Therefore, the selection
criteria of MI1 and MI1+ might be influenced. As a comparison of Figures 10 and 11 with 36
and 37 shows, this influence seems to be negligible for both MI1 and MI1+. This hypothesis
is further supported as the p-values in Figure 33 seem to be influenced similarly for different K

and therefore selection criteria based on these might not necessarily be influenced. Influence on
the fraction of false positives seems to be limited as a comparison of the observed fraction of
false positives shows. This is interesting as the p-values of the underlying estimators are shifted
towards smaller values, indicating that this effect might be weak for p-values that are smaller
than 0.05.
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6 Conclusion, Possible Modifications and Extensions

Overall the findings of this thesis illustrate the problems of multiple testing and some aspects
of p-hacking in the context of RD designs. I do not expect that real scientists use the MI
estimators I envisioned, but as they mimic patterns of dishonest behaviour incentivised by the
same structures found in the real world, they might tell something about possible distortions in
scientifically published results. An inflated number of false positives, unreasonably high effect
sizes and equally unreasonable p-values as shown in this simulation can be the consequence.
In the last years meta analyses and publications that take an even broader look at published
science like Alexander A. Aarts et al. (2015) showed that these patterns can also be found in
reality.

The underlying idea of this thesis does not only apply to RD designs and there are many more
ways to game the system than choosing different functional forms, like post-hoc formulation
and testing of multiple hypotheses, or choosing data subsets that fit pre-existing ideas etc. This
thesis might motivate critical thought on publication bias and the incentives created by the
current state of publishing, as well as the steps scientists might take due to these conditions. A
factor contributing to the problem is the p-value which is used extensively in this thesis (as well
as nearly every quantitative science). While not problematic in itself, relying on this statistic
alone is — even without considering outright incorrect application or false interpretation which
is also common. For more information on this Wasserstein and Lazar (2016) and Wasserstein,
Schirm, and Lazar (2019) are good places to start as these address the most common forms of
misunderstanding and malpractice concerning the use of p-values, as well as giving advice on
how to avoid them.

Coming back to RD designs, the findings of this thesis are probably not limited to the specific
estimators I constructed. There are several reasonable ways to extend on the findings presented
which I addressed shortly in the main text. I am going to elaborate more on some of those in
the following.

Further Modification of the MI Estimators One possible modification to the MI3 and MI3+
Estimators would be to construct them in a more hierarchical way. By hierarchical I mean, to not
only include significance at a level of 95% in the estimators, but to also include significance at
90% and 99%. I propose one such estimator in section 9.4. To obtain useful information about
its distribution one would probably need to use a larger simulation, as the density estimates for
the highly significant false positives would be very imprecise for a small number of batches. It
would also be possible to change the priorities of the estimators, giving more weight to positivity
or other factors.

Approximation of the Power Function Given more time and computational resources it
would be possible to add a third dimension to this simulation. Where this thesis only addressed
the case of the null hypothesis being correct, it would also be interesting to see how the MI
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estimators behave if there really is a discontinuity in the dgp. Simulating b data sets as shown
before (each consisting of m batches of n observations generated by the same dgp) for different
τ could be used to approximate the power function of the MI estimators. This could be inter-
esting as even though the null τ = 0 is technically incorrect in many of these scenarios, the MI
estimators might still lead to an inflated number of rejections. These could be studied further to
obtain even better knowledge on the effects of covert multiple testing.

Changes in the position of the Threshold If the choice of c, meaning the position of the
threshold, is not fixed by theory another way to game the system in RD analysis might be
to perform this analysis for many choices of c. As c = 0 is not special in the context of the
homoskedastic dgp used in the main part of this thesis, one could calculate the underlying OLS
estimators for a multitude of c and only report the findings that perform best in a publishing
context. This further increases the problems found in this thesis and could be studied in more
detail in another simulation.

Linear or Polynomial Data Generating Processes Another modification could be made to
the dgps used in this thesis. Instead of assuming that Xi itself has no direct influence on Yi, there
are many possible specifications one could use to generate data. Examples include linear or
polynomial processes of varying specification. This would enable a similar analysis as presented
in this thesis. To keep the unbiased nature of the estimators, one would have to include only
estimators of equal or higher order K than the polynomial order of the dgp. There are many more
possible dgps which could require different estimators, but due to the vast nature of possibilities
I will refrain from naming specific examples.

Nonparametric Discontinuity Estimators In this thesis I focused on parametric approaches
to estimating discontinuities. From a theoretical standpoint it is often more informative to take
a closer look at observations near the threshold, since individuals there might be more closely
comparable. Therefore, it might be unwise to include observations far away from the threshold
when searching for a discontinuity. This motivates the use of estimators such as the Nadaraya-
Watson estimator10 or local-linear estimator. Due to the nature of the dgp used in my analysis,
these estimators would perform optimally for bandwidths that would counteract the local ap-
proach. By this I mean, that cross-validation would choose a bandwidth that is large enough
for these estimators to become equal to their corresponding global counterparts. Choosing a
different setting, for example a non-linear dgp, might be an interesting possibility to extend the
analysis presented in this thesis. One could employ methods such as cross validation to obtain
a good estimate for which bandwidth to choose in further analyses. It would also be possible to
use a dishonest cross-validation criterion to create a different kind of non-parametric MI esti-
mator that chooses its bandwidth to create estimates that fit a specific narrative, creating further
possibilities for dishonest behaviour.

10Figure 9 shows an estimate created by the Nadaraya-Watson Estimator with a rectangular kernel and a band-
width of 0.1.
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9.1 Additional General Figures
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Figure 6: Maximum discontinuities estimated by different polynomial OLS specifications

26



0.00

0.25

0.50

0.75

1.00

-10 -5 0 5 10

assignment variable

pr
ob

ab
ilit

y 
of

 tr
ea

tm
en

t
Treatment

0

20

40

-10 -5 0 5 10

assignment variable

In
di

vi
du

al
s 

co
un

te
d

-2.5

0.0

2.5

5.0

-10 -5 0 5 10

assignment variable

ou
tc

om
e 

va
ria

bl
e

Outcome Variable

Individual Treated
FALSE

TRUE

Figure 7: Visualisation for Fuzzy Regression Discontinuity
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Figure 8: Histograms for p-values by order of polynomial
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9.2 Additional Figures for MI Estimators
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Figure 10: Which Estimators do the MI Estimators choose?
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Figure 11: Which Estimators do the MI Estimators choose? (Only for significant results)
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Figure 12: Estimated Densities for different orders of highest Polynomial estimated
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Figure 13: Estimated Densities for different orders of highest Polynomial estimated (only for
significant estimates)

In both cases I use that, due to the setup, the density has to be symmetrical to obtain a better
estimate.
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Figure 14: Histograms of p values for different orders of highest Polynomial estimated (0-3)
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Figure 15: Histograms of p values for different orders of highest Polynomial estimated (4-6)
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9.3 Additional Figures for One-sided MI Estimators
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Figure 16: Which Estimators do the One-Sided MI Estimators choose?
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Figure 17: Which Estimators do the One-Sided MI Estimators choose? (Only for significant
results)
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Figure 18: Estimated Densities for different orders of highest Polynomial estimated
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Figure 19: Estimated Densities for different orders of highest Polynomial estimated (only for
significant estimates)
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Figure 20: Histograms of p values for different orders of highest Polynomial estimated (0-3)
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Figure 21: Histograms of p values for different orders of highest Polynomial estimated (4-6)
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9.4 Hierarchical MI3

MI3Hir ({(τ̂k, pk) ; k = 1, . . . ,K}) =



(τ̂h, ph), if {pk | pk ≤ 0.1 for k = 1, . . . ,K}= /0
(τ̂i, pi), if {pk | pk ≤ 0.1 for k = 1, . . . ,K} 6= /0

and {pk | pk ≤ 0.05 for k = 1, . . . ,K}= /0
(τ̂ j, p j), if {pk | pk ≤ 0.05 for k = 1, . . . ,K} 6= /0

and {pk | pk ≤ 0.01 for k = 1, . . . ,K}= /0
(τ̂l, pl), otherwise

(19)

where l = argmax
k∈{1,...,K} with pk≤0.01

|τ̂k|, j = argmax
k∈{1,...,K} with pk≤0.05

|τ̂k|,

i = argmax
k∈{1,...,K} with pk≤0.1

|τ̂k| and h = argmax
k
|τ̂k|

9.5 Outline Estimation of Joint Distribution

In the following I will present an outline for estimation of the joint distribution for the dis-
continuity estimates of different polynomial specification. I am not going to elaborate on the
necessary prerequisites for OLS estimation in the given context.
Let β̂ j ∈ R2( j+1) denote the vector of estimates created by the estimator with polynomial spec-
ification of order j. (The constant estimator is therefore denoted as β̂0 ∈ R2.) The following
relationship is known from standard OLS theory and since there is no misspecification of the
functional form (among other things) should hold here:

√
n(β̂ j−β j)→d N (0,Σ j) (20)

Since Σ j is unknown we estimate it using

Σ̂ j = (XT
j X j)

−1
σ̂

2
j (21)

with the usual notation.
To test the significance of these estimates we can also use the usual approach. Let β̂i, j denote
the i-th entry of β̂ j. Assuming that the estimate for the discontinuity is always the second entry,
this means that β̂2, j := τ̂ j. As a similar convention let σ̂2

i, j denote the i-th diagonal element of
Σ̂ j meaning the estimated variance of β̂i, j.
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If we now stack the vectors β̂ j ∀ j = 0,1, . . . ,J, we obtain

√
n
(

β̂J,stacked−βJ,stacked

)
=
√

n




β̂0

β̂1
...

β̂J

−


0
0
...
0


→d N

0,


Σ0 Σ0,1 . . . Σ0,J

Σ1,0 Σ1 . . . Σ1,J
...

... . . . ...
ΣJ,0 ΣJ,1 . . . ΣJ




(22)

Where all remaining components Σk,l can be estimated.

τ̂J,stacked :=


β̂2,0

β̂2,1
...

β̂2,J

= Aτ


β̂0

β̂1
...

β̂J

→d N (0,Στ) (23)

where Aτ ∈ R(J+1)×(J+1)(J+2) is a matrix that consists only of zeroes, except for one entry in
each row corresponding to the discontinuity estimate that is equal to 1. For the j-th row, this
entry is in the k-th column, where k = j2− j + 2. Therefore we obtain the theoretical result,
that

Στ = Aτ


Σ0 Σ0,1 . . . Σ0,J

Σ1,0 Σ1 . . . Σ1,J
...

... . . . ...
ΣJ,0 ΣJ,1 . . . ΣJ

AT
τ ≈ Σ̂τ = Aτ


Σ̂0 Σ̂0,1 . . . Σ̂0,J

Σ̂1,0 Σ̂1 . . . Σ̂1,J
...

... . . . ...
Σ̂J,0 Σ̂J,1 . . . Σ̂J

AT
τ (24)

Approximation for large number of observations. This result could be used to construct less
conservative confidence intervals for the type of multiple testing analysed in this thesis. To do
so, it is useful to observe that

max
j
|β̂i, j| ≤ t⇐⇒ |β̂i, j| ≤ t ∀ j = 0,1, . . . ,J (25)

With Σ̂τ as an estimate of Στ , we can use the properties of this distribution to calculate a value
of t, such that

P(max
j
|β̂2, j| ≤ t) = P(|τ̂J,stacked| ≤ t~1J+1) = 1−α, where~1J+1 =


1
1
...
1

 ∈ RJ+1 (26)

Giving us a confidence interval for the given confidence level of α .
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9.6 Additional Figures and Tables for Heteroskedasticity

Diamond-Process The following Tables and Figures were created for the process with a
diamond-like shape described in section 5.1.
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Figure 22: Estimated Densities for Discontinuities and p-values by order of Polynomial
(Diamond-process)

K 0 1 2 3 4 5 6
correlation coefficient -0.949 -0.947 -0.946 -0.946 -0.942 -0.936 -0.93

Table 6: Correlation between |τ̂| and their corresponding p-values for different K (Diamond-
process)
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Figure 23: Fraction of False Positives by Maximum Order of Polynomial estimated (Diamond-
process)
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Figure 24: Histograms for p-values by order of polynomial (Diamond-process)

0 1 2 3 4 5 6
0 1 0.474 0.146 0.0643 0.0377 0.0286 0.0222
1 0.783 1 0.55 0.252 0.149 0.101 0.0715
2 0.481 0.828 1 0.64 0.357 0.225 0.156
3 0.347 0.603 0.872 1 0.694 0.403 0.266
4 0.268 0.472 0.686 0.894 1 0.721 0.447
5 0.213 0.384 0.562 0.732 0.909 1 0.75
6 0.178 0.322 0.471 0.615 0.766 0.92 1

Table 7: Correlation between |τ̂| for different K (purple) and p-values of different K (green)
(Diamond-process)
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Figure 25: Estimated Densities for significant Discontinuity Estimates (Diamond-process)
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Figure 26: Which Estimators do the MI Estimators choose? (Diamond-process)
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Figure 27: Which Estimators do the MI Estimators choose? (Only for significant results)
(Diamond-process)
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Figure 28: Histograms of p values for different orders of highest Polynomial estimated (0-3)
(Diamond-process)
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Figure 29: Histograms of p values for different orders of highest Polynomial estimated (4-6)
(Diamond-process)
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Hourglass-Process The following Tables and Figures were created for the process with an
hourglass-like shape described in section 5.1.
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Figure 30: Estimated Densities for Discontinuities and p-values by order of Polynomial
(Hourglass-process)
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Figure 31: Fraction of False Positives by Maximum Order of Polynomial estimated (Hourglass-
process)
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0 1 2 3 4 5 6
0 1 0.014 -0.0167 0.00748 -0.000477 -0.016 0.00258
1 0.0437 1 0.00567 0.00282 0.00545 0.0032 0.00687
2 0.0344 0.102 1 0.00618 0.00817 -0.00444 0.00219
3 0.0485 0.0888 0.171 1 0.0232 0.0293 0.0101
4 0.0227 0.0618 0.122 0.207 1 0.0472 0.0152
5 0.0271 0.0683 0.127 0.202 0.226 1 0.033
6 0.0249 0.045 0.107 0.173 0.209 0.283 1

Table 8: Correlation between |τ̂| for different K (purple) and p-values of different K (green)
(Hourglass-process)
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Figure 32: Estimated Densities for significant Discontinuity Estimates (Hourglass-process)
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9.7 Additional Figures and Tables for Outliers

Outliers close to c The following Tables and Figures were created for the process with outliers
close to c in section 5.2.
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Figure 33: Estimated Densities for Discontinuities and p-values by order of Polynomial (outliers
close to c)

K 0 1 2 3 4 5 6
correlation coefficient -0.933 -0.909 -0.882 -0.853 -0.822 -0.798 -0.778

Table 9: Correlation between |τ̂| and their corresponding p-values for different K (outliers close
to c)
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Figure 34: Fraction of False Positives by Maximum Order of Polynomial estimated (outliers
close to c)
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K/K 0 1 2 3 4 5 6
0 1 0.252 0.0751 0.0346 0.0249 0.0259 0.0234
1 0.613 1 0.376 0.16 0.0976 0.0692 0.0458
2 0.392 0.737 1 0.444 0.235 0.138 0.101
3 0.288 0.541 0.804 1 0.512 0.284 0.183
4 0.227 0.42 0.631 0.844 1 0.553 0.321
5 0.183 0.341 0.518 0.695 0.869 1 0.58
6 0.146 0.285 0.438 0.587 0.736 0.886 1

Table 10: Correlation between |τ̂| for different K (purple) and p-values of different K (green)
(outliers close to c)
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Figure 35: Estimated Densities for significant Discontinuity Estimates (outliers close to c)
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Figure 36: Which Estimators do the MI Estimators choose? (outliers close to c)
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Figure 37: Which Estimators do the MI Estimators choose? (Only for significant results) (out-
liers close to c)
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Outliers far away from c The following Tables and Figures were created for the process with
outliers far away from c described in section 5.2.
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Figure 38: Estimated Densities for Discontinuities and p-values by order of Polynomial (outliers
far from c)
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Figure 39: Fraction of False Positives by Maximum Order of Polynomial estimated (outliers far
from c)
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K/K 0 1 2 3 4 5 6
0 1 0.103 0.0579 0.0325 0.00502 0.009 0.0165
1 0.374 1 0.2 0.114 0.0708 0.0539 0.0522
2 0.269 0.552 1 0.323 0.193 0.147 0.106
3 0.211 0.419 0.656 1 0.392 0.259 0.185
4 0.165 0.327 0.522 0.714 1 0.443 0.297
5 0.141 0.281 0.434 0.597 0.751 1 0.49
6 0.116 0.236 0.362 0.505 0.637 0.779 1

Table 11: Correlation between |τ̂| for different K (purple) and p-values of different K (green)
(outliers far from c)
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Figure 40: Estimated Densities for significant Discontinuity Estimates (outliers far from c)
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