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1 Introduction

In this paper, I am going to analyse the effects of changing the order of variables in a

three-dimensional structural VAR[1] model on the impulse responses obtained by orthog-

onalizing the error terms in the VMA[∞] representation of the reduced form process.

To do so, I am first going to explain the process of Impulse Response Analysis using

Cholesky decomposition to orthogonalize the error terms and the importance of ordering

the variables correctly.

To find out how bad the problems described theoretically are in reality, I will then

perform a Monte Carlo simulation for a specific three-dimensional SVAR[1] process, where

B0 is a lower triangular matrix. For the data generated by this process I am going to

estimate VAR[1] models and their respective impulse response functions using Cholesky

decomposition. I will then compare the estimated impulse response functions for different

permutations of components to the theoretical impulse response functions and the esti-

mated impulse response functions for the correct order. In my analysis I am also going to

use confidence intervals for the estimated impulse responses in the correct order created

via a bootstrap approach. These will be used to look at how often the impulse responses

for incorrect permutations lie in those confidence intervals.

As a next step I am going to perform a similar analysis for a general SVAR[1] process,

meaning that B0 does not have to be a lower triangular matrix. Here orthogonalization

using a Cholesky decomposition is not economically justified in any order of components.

I will look at how different the results are, if I use the method nevertheless and compare

them to the theoretical impulse response function which can be calculated if B0 is known.

In the end, I am going summarize my findings and give an outlook on the process of

identifying B0 and other methods of conducting impulse response analysis, that either

deal with the problem of ordering the variables in another way or use a completely different

approach to finding the impulse responses.
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2 Impulse Response Analysis

2.1 Data Generating Process and its representations

In a multidimensional setting it is often of interest to know the response of one variable to

an impulse in another variable. The process of analysing these responses is called Impulse

Response Analysis. In this explanation of the general problem of changing the order of

components when analysing the impulse responses of a specific process, I am going to

follow structure and notation from Kilian and Lütkepohl 2017, and Lütkepohl 2007.

Consider a stationary three-dimensional time series yt, t = 1, ..., T . I assume that the

data generating process is an unknown structural vector autoregressive process of order

one as shown in equation 1.

B0yt = B1yt−1 + ωt, yt, ωt ∈ R3,B0,B1 ∈ R3×3 (1)

Where ωt is a serially uncorrelated error term with E(ωt) = 0 and mutually uncorre-

lated elements. Therefore Σω, the variance-covariance matrix of ωt, is a diagonal matrix,

which in the following will be assumed to be I3.1

Multiplying from the left by B0
−1 results in the reduced form of our data generating

process, which can be estimated consistently. I will assume the reduced form to be known

in the later parts of this chapter.

yt = B0
−1B1yt−1 + B0

−1ωt

= A1yt−1 + εt
(2)

The reduced form can be written as a VMA[∞] process, by inserting recursively for

yt−i ∀i ∈ N. This yields a representation as an infinite sum of serially uncorrelated error

terms.

yt = A1yt−1 + εt = A1[A1yt−2 + εt−1] + εt

= A1[A1[A1yt−3 + εt−2] + εt−1] + εt = ...

=
∞∑
i=0

Φiεt−i

(3)

This form is known as the VMA[∞] representation of the reduced form process. Since

Σε is not generally a diagonal matrix, meaning that the components of εt might be corre-

lated, one cannot analyse the effect of an isolated impulse in one variable yet. First one

has to transform the process in such a way, that the components of the error term are

uncorrelated. This can be achieved via a so called Cholesky decomposition.

1This does not reduce generality as long as one does not impose restrictions on the diagonal elements
of B0.
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2.2 Cholesky Decomposition

Since Σε is a variance-covariance matrix, it is Hermitian and positive semi-definite. I am

going to assume it to be positive definite in the following, but a similar argument can be

made for the generalized case.2 Assuming positive definiteness, there is a unique lower

triangular matrix P such that Σε = PP T . This is the so called Cholesky decomposition

of Σε. Using this method, the process can be written as follows

yt =
∞∑
i=0

Φiεt−i =
∞∑
i=0

Θiηt−i Θi = ΦiP ηt = P−1εt (4)

Ση is derived by

Ση = E[(ηt − µη)(η − µη)T ] = E[ηηT ]

= E[(P−1ε)(P−1ε)T ] = E[P−1εεTP−1T ]

= P−1E[εεT ]P−1T = P−1ΣεP
−1T

= P−1PP TP−1T = I3

(5)

As the components of ηt are uncorrelated, I am now able to analyse the impact of

an isolated impulse in one component using equation 4. Assuming an impulse ηt =

(η1,t, η2,t, η3,t)
T the impulse responses can be written as

∂yt+i
∂ηTt

= Θi, i = 0, 1, ..., H (6)

where Θi ∈ R3×3 is a matrix that describes the responses of each variable to each shocked

component and H is the maximum propagation horizon of the impulse. In the later parts

of this paper I chose H = 10 when portraying theoretical or estimated impulse response

functions. Up until now I assumed the order of components to be correct in the reduced

form, but since there are multiple possible permutations it is not assured that one would

construct the process in this way, as from the data alone we cannot deduce the correct

order.

2.3 Why the order of components is of importance

If one assumes B0 to be a lower triangular matrix, one such P for which Σε = PP T is

B0
−1.

Σε = E[εtε
T
t ] = E[(B0

−1ωt)(B0
−1ωt)]

= E[B0
−1ωtω

T
t B0

−1T ] = B0
−1E[ωtω

T
t ]B0

−1T

= B0
−1I3B0

−1T = B0
−1B0

−1T

(7)

2For a positive semi-definite matrix Σε the Cholesky decomposition does not have to be unique.
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Since the Cholesky decomposition ist unique, it is possible to identify B0, if the compo-

nents of the reduced form model are in correct order. So the theoretical impulse responses

can be described using

yt =
∞∑
i=0

Θiηt−i Θi = ΦiB0
−1 ηt = B0εt = ωt (8)

Taking another look at equation 3 shows that Φi = Ai1. Replacing the corresponding

parts in equation 8 results in equation 9.

∂yt+i
∂ηTt

= Θi = A1
iB0

−1 = (B0
−1B1)iB0

−1 (9)

The assumption that B0 is a lower triangular matrix gives the underlying model a

particular structure and thereby implies a particular causal chain between the components

of the process. Processes that share these qualities are called Recursively Identified.

B0yt =

b
0
1,1 0 0

b02,1 b02,2 0

b03,1 b03,2 b03,3


Y1,tY2,t

Y3,t

 =

 b01,1Y1,t

b02,1Y1,t + b02,2Y2,t

b03,1Y1,t + b03,2Y1,t + b03,3Y1,t



=

b
1
1,1 b11,2 b11,3

b12,1 b12,2 b12,3

b13,1 b13,2 b13,3


Y1,t−1Y2,t−1

Y3,t−1

 +

ω1,t

ω2,t

ω3,t


(10)

As can be seen from equation 10, Y1 has a contemporaneous effect on Y2 and Y3, Y2 has

a contemporaneous effect on Y3 and Y3 does not have a contemporaneous effect on the

other components of the process. This information cannot be found in the data without

external restrictions on the elements of B0. I will drop the assumption of triangularity

later, to study the effect of orthogonalizing the error terms on the impulse responses if it is

not economically justified to assume recursive identification, i.e. if B0 is not a triangular

matrix in any permutation of components.

If one continues to assume triangularity for B0 it is interesting in which way a change

in the order of components of our reduced form models influences the series of matrices

[Θi], since the orthogonalization of error terms now implies a different causal chain.

Let yxyzt denote the component permutation of yt, such that the components are now

in order x-y-z

yt =

Y1,tY2,t

Y3,t

 yxyzt =

Yx,tYy,t

Yz,t

 (11)
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and Axyz denote the permutation of matrix A where rows and columns have been

interchanged such that equation 12 is fulfilled.

A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 Axyz =

ax,x ax,y ay,z

ay,x ay,y ax,z

az,x az,y az,z

 (12)

The correct underlying model can be seen in equation 10. But if one uses y213t as the

basis of the reduced form model permutate and orthogonalizes via a Cholesky decompo-

sition, this implies a structure as shown below in equation 13.

B̃0y
213
t =

b̃
0
1,1 0 0

b̃02,1 b̃02,2 0

b̃03,1 b̃03,2 b̃03,3

 y213t =

b̃
1
1,1 b̃11,2 b̃11,3

b̃12,1 b̃12,2 b̃12,3

b̃13,1 b̃13,2 b̃13,3

 y213t−1 +

ω2,t

ω1,t

ω3,t

 (13)

This structure implies that Y2 has a contemporaneous effect on Y1 and Y3, that Y1 has a

contemporaneous effect on Y3 and Y3 to not have any contemporaneous effects on the other

components, which constitutes a direct contradiction to the actual causal structure and

is therefore a misspecification of the model. This means that impulse responses obtained

via orthogonalization of the error term are different from the correct ones as the Cholesky

decomposition now delivers a P̃ 6= (B213
0 )−1. Since one only knows the reduced form

and cannot be certain, which permutation of components correctly identifies the impulse

responses, this is very problematic.

The theoretical impulse response functions for the incorrect permutations can be found

analogously to the correct order. To do so, I calculate the reduced form of our correctly

specified model in an incorrect order.

B213
0 y213t = B213

1 y213t−1 + ω213
t (14)

where

B213
0 =

b
0
2,2 b02,1 0

0 b01,1 0

b03,2 b03,1 b03,3

 B213
1 =

b
1
2,2 b12,1 b12,3

b11,2 b11,1 b11,3

b13,2 b13,1 b13,3

 ω213
t =

ω2,t

ω1,t

ω3,t


Using the notation introdued in equations 11 and 12, the reduced form can be written as

y213t = (B213
0 )−1B213

1 y213t−1 + (B213
0 )−1ω213

t (15)
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which in turn can be transformed into its VMA[∞] representation and then orthogo-

nalised using a Cholesky decomposition

y213t =
∞∑
i=0

Φ213
i ε213t−i =

∞∑
i=0

((B213
0 )−1B213

1 )iP̃ P̃−1ε213t−i

=
∞∑
i=0

((B213
0 )−1B213

1 )iP̃ η213t−i

(16)

Even though equation 16 is also a representation of our data generating process in

the form of an infinite sum of error terms that are uncorrelated componentwise as in

equation 8, this model misspecifies the underlying causal chain. For this permutation of

components one obtains a different set of impulse response functions, since

∂y213t+i

∂(η213t )T
= ((B213

0 )−1B213
1 )iP̃

6= Θ213
i = [(B0

−1B1)iB0
−1]213 = ((B213

0 )−1B213
1 )i(B213

0 )−1
(17)

as P̃ 6= (B213
0 )−1. In the appendix I showed that A213B213 = [AB]213, which equation

17 relies on. The statement holds true for other permutations as well, as can be shown

analogously.

From this theoretical analysis I conclude that the usage of an incorrect order of vari-

ables in the process of analysing the impulse responses can be problematic. But since I

cannot give a general formula for P̃ in each permutation, I do not know how far off the

impulse response functions derived from an incorrect permutation lie from the theoretical

impulse response function of the data generating process.

If B0 is not a lower triangular matrix most of these results can be constructed anal-

ogously, the difference being that there is no correct way to use Cholesky decomposition

as a means to finding the impulse response functions. Since the model is not recursively

identified it is not possible to obtain the correct sequence [Θi] as it was shown in equation

8 because B0 cannot be identified. The theoretical impulse response functions can still be

constructed and for each permutation one can find estimated impulse response functions

using the same method, but there is no reason to assume that these are similar to the

theoretical ones.

To get a feeling for the effects of the problem which I described theoretically, I am going

to perform Monte Carlo simulations analysing the differences in the generated impulse

response functions in chapters 3 and 4.
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3 Simulation for B0 lower triangular matrix

3.1 Process and Simulation

In this section I will analyse the effects of choosing an incorrect order when orthogonalizing

the error terms on the impulse response functions when B0 is a lower triangular matrix.

To do so, I am going to use a Monte Carlo simulation for a specific data generating

process. Consider the stationary three-dimensional structural VAR[1] process

B0yt =

1 0 0

2 1 0

1 1.5 2

 yt =

0.8 0.1 0.1

0.6 0.6 0.3

1.2 1.5 1.2

 yt−1 + ωt (18)

where Σω = I3 and the other conditions mentioned in chapter 2 are fulfilled. I created

100 realisations of length 1000 for this process using its reduced form

yt =

 0.8 0.1 0.1

−1 0.4 0.1

0.95 0.4 0.475

 yt−1 + εt Σε =

 1 −2 1

−2 5 −2.75

1 −2.75 1.8125

 (19)

A realisation of this process can be seen in the appendix in figure 9. The process is

stationary which can be shown by calculating the roots of its characteristic polynomial,

its resulting variance-covariance matrix Σε is positive definite. Its theoretical impulse

response functions can be derived by transforming the reduced form into its VMA[∞]

representation and then using the results from equation 8 and 9. These theoretical impulse

response functions are depicted in figure 1.
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Figure 1: Theoretical Impulse Response Functions
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The next step was to fit a VAR[1] model to each realisation of the time series in every

permutation of components. This was done using the function VAR from the package

vars in R.3 Information about the implementation of this package can be found in Pfaff

2008. The model fitted to the realisation of the data generating process shown in figure

9 in its correct order is

ŷt =

 0.016

−0.046

0.002

 +

 0.843 0.101 0.057

−1.049 0.401 0.198

0.988 0.418 0.439

 yt−1 + et (20)

3.2 Results

Comparing this estimated process to equation 19, the estimated values are quite close to

the theoretical ones, which was expected, since the reduced form model can be estimated

consistently from the data. For each of those estimated processes, I created 5 additional

processes that were identical aside from the order of components. I did this to be able to

compare the resulting estimates for the impulse response functions, which were calculated

using the function irf from the same package. As shown in equation 17, the impulse re-

sponse functions for different orderings of components do not have to be identical. For the

correct permutation of components I calculated the estimated impulse response functions

and a 95% confidence interval, which was constructed using a bootstrap approach. These

estimates including the confidence interval for the data from figure 9 are shown in figure

2.
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Figure 2: Estimated Impulse Response Functions including bootstrap CI

3https://cran.r-project.org/web/packages/vars/index.html
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The function irf uses the same approach to finding the impulse response functions

as I have described in 3.1, so it assumes that an orthogonalization in the given order is

appropriate and orthogonalizes the error term using a Cholesky decomposition.
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Figure 3: Comparison of two IRFs from different Permutations

As shown before orthogonalization of errors is problematic when the components of

our time series are in an incorrect order. These differences can be seen in figure 3, which

shows two different impulse response function for Y2 to a shock in Y1 and figure 4, which

compares the means for the correct permutation (blue), the confidence intervals (red) and

the incorrect permutations (black).
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Figure 4: Means of IRFs in different permutations
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From figure 4 alone, one can see that the estimated impulse responses show strong

differences in their patterns and characteristics. Quite often the estimated responses for

incorrect permutations lie outside of the confidence intervals and far from the estimates

for the correct order of components or the theoretical values. Now I look at how often

the estimated impulse response functions for different permutations lie in the respective

confidence interval for the correct permutation of the same realisation of the time series.

The results are shown in figure 5.
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Figure 5: Fraction of estimated IRFs that lie in the bootstrap CI

As can be seen in figure 5 the impulse response functions for some permutations like 2-

3-1 or 3-2-1 lie in the confidence interval quite rarely. Because these values are calculated

for individual lags, one can use the lowest point in each graph as an upper boundary for

the fraction of estimated impulse response functions that lie completely in the constructed

confidence interval. These upper boundaries and the calculated values can be seen in the

following table.

Permutation correct 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1

Upper boundary 1 0.75 0.527 0.327 0.58 0.253

Calculated fraction 1 0.406 0.333 0 0.072 0

As can be seen in the table, in reality the fraction of estimated impulse responses

that lie in the confidence interval completely is even lower. Since one cannot know the

correct order of variables just from the data, there is no certainty, which impulse response

functions are the ones one should work with. To choose a permutation of components

one has to think about the economical mechanism that drives the time series and derive

restrictions on B0 to obtain the necessary information.
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Taking a closer look at the impulse response functions generated for the correct permu-

tation and permutation 1-3-2 I find, that they are in fact identical for shocks in component

Y1 for every realisation of our data generating process. This can be explained by look-

ing at how those impulse response functions are derived. Starting with equation 17 and

adapting it for order 1-3-2, I obtain

∂y132t+i

∂(η132t )T
= ((B132

0 )−1B132
1 )iP̃

6= Θ132
i = [(B0

−1B1)iB0
−1]132 = ((B132

0 )−1B132
1 )i(B132

0 )−1
(21)

If one now looks at P̃ , which is the result of using a Cholesky decomposition on the

process in order 1-3-2, it becomes clear that its first row is identical to the first row of

(B132
0 )−1 where the second and third column have been exchanged. Similar patterns can

be found for other permutations relative to each other.

Combining the information from figure 4 and figure 5, I can conclude that misspec-

ificating the order of components is in fact a serious problem, if one wants to conduct

impulse response analysis on data generated by the process in equation 18. So even though

some permutations might yield correct impulse responses for specific components in case

of specific impulses, these findings show that one has to be careful and consider the eco-

nomic theory behind the modelled time series when using orthogonalization as a means

of finding the impulse response functions, even if it is reasonable to assume recursive

identification in some permutation.

4 Simulation for general B0

4.1 Process and Simulation

Now consider the case where B0 is not a lower triangular matrix. In this case orthogo-

nalizing the error term using a Cholesky decomposition is not a valid approach to analyse

the impulse responses, since the model is not recursively identified. As said before orthog-

onalization is only advisable if it is economically justified to assume a particular causal

chain in the underlying process. In this chapter I am going to study the effect of using

the aforementioned method if it is not possible to do so. Consider the following data

generating process

B0yt =

0.6 0.9 0.2

0.3 0.2 1

1.1 0.5 0.3


Y1,tY2,t

Y3,t

 =

0.6 0.1 0.3

0.5 0.5 0.2

0.8 0.1 0.1


Y1,t−1Y2,t−1

Y3,t−1

 +

ω1,t

ω2,t

ω3,t

 (22)
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This model is not recursively identified as B0 is not a lower triangular matrix. Its reduced

form is constructed analogously to the special case discussed in chapter 3.

yt =

0.537 −0.068 −0.127

0.244 0.043 0.382

0.29 0.512 0.162

 yt−1 + εt (23)

where

Σε = B0
−1B0

−1T =

 2.416 −2.265 −0.541

−2.265 3.298 −0.043

−0.541 −0.043 1.265


This process is stationary as can be shown by checking the roots of its characteristic

polynomial. Its resulting variance-covariance matrix Σε is positive definite.

As shown in equation 8 and 9 before, I am able to calculate the theoretical impulse

responses using the VMA[∞] representation of the reduced form process if B0 is known.

This is possible since it is not necessary for B0 to be a lower diagonal matrix to use this

approach. The theoretical impulse response functions can be seen in figure 6.
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Figure 6: Theoretical Impulse Response Functions for the general process
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As in chapter 3, I created 100 realisations of length 1000 using the reduced form

described in equation 23. One realisation is shown in figure 10 in the appendix. For each

of those data sets, I fitted a VAR[1] model using the same packages and functions as in

chapter 3. The fitted model for the data depicted in figure 10 is shown in equation 24.

ŷt =

 0.022

−0.0007

0.042

 +

0.552 −0.016 −0.136

0.192 −0.009 0.392

0.322 0.494 0.164

 yt−1 + et (24)

For every one of those models I calculated the impulse response functions in each order of

components analogously to chapter 3, even though orthogonalization is not economically

justified in any permutation of components. So none of the sets of impulse response

functions calculated this way should describe the process correctly as this method is not

able to identify B0.

4.2 Results

Looking at the estimated impulse responses we can see a multitude of things. The means

of the impulse response functions created for these permutations over all realisations are

shown in figure 7.
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Figure 7: Comparison of impulse responses for different permutations
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The means of the impulse response functions calculated via orthogonalization are de-

picted in black, whereas the theoretical impulse responses are shown in red. As can be

seen in figure 7 the estimated impulse response functions can differ wildly from the theo-

retical responses and even though some permutations lie closely to the correct responses,

there is no possibility to decide which ones are close.
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Figure 8: 1-2-3 order irf and Theoretical irf

An example for a particularly strong difference can be found in the comparison between

the theoretical impulse response functions for Y1 to a shock in Y1 itself compared to the

one obtained from the 1-2-3 order shown in figure 8. Even though both functions tend to

zero as the lag increases, which is to be expected for a stationary process, the differences

are substantial: the theoretical impulse response function is negative for every lag and

approximately concave, whereas the estimated function is positive and convex. These

differences could be immensely important if one tries to analyse a real economic process.

Since there is no correct order of components it is not possible to create similar con-

fidence intervals as in chapter 3. So it is not possible to look at how often the estimated

impulse response functions lie in the respective confidence intervals. Nevertheless the

findings up to this point once again support my theoretical claim that one has to be very

careful when using Cholesky decomposition to orthogonalize the error terms, since the

deviations from the theoretical impulse response functions can be quite extreme, to the

point where instead of a positive response the estimate delivers a negative response.

5 Summary

In this paper I addressed the problem of exchanging the components in the reduced form

of an SVAR[1] process when analysing the impulse responses using Cholesky decompo-

sition. My concerns about the problem of misspecification in the order of components,

which I presented in a theoretical analysis in chapter 2 were confirmed by the simulations

conducted in chapter 3 and 4.

For the case that B0 is a lower triangular matrix, presented in chapter 3, I found that

even though some permutations show similar patterns as the correct order, especially if

specific permutations are chosen, the differences in general are quite substantial. Since
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one cannot identify the correct order from the data alone, economic theory has to be used

as a foundation to make sure that one chooses the correct permutation, even if the model

is recursively identified. Some points on how to find additional restrictions are named in

chapter 6.

If there is no reason to assume that B0 is a lower triangular matrix in any permutation

of components, the problems can be even more substantial if one uses orthogonalization

to conduct impulse response analysis. Since the method is not suitable for this case, the

results can differ wildly from the correct impulse responses, which shows that the method

should only be used when the assumption of triangularity is justified theoretically.

In summary my theoretical findings and the results of the simulations conducted in

this paper confirm the idea that Impulse Response Analysis via orthogonalization has to

be done carefully, as it can lead to incorrect results when used on a misspecified model

or in cases where the general methodology is not applicable. These incorrect results can

indicate completely different relations between the components of a multivariate time

series, that if interpreted could lead to false implications on reality, which in turn could

be very problematic if applied to politics.

6 Outlook

In light of the findings of the theoretical analysis and the results from the simulations, the

question is how to deal with the problems that have been highlighted in this paper. First,

how to get information about B0? In Kilian and Lütkepohl 2017 the authors explain that

from Σε one is able to obtain K(K+1)
2

identifying restrictions for B0 due to its symmet-

rical nature. If one wants to uniquely identify B0 additional restrictions are necessary,

which can come from different sources outside the data. The authors identify multiple

possibilities to obtain these in chapter 8.3. In some scenarios one might want to impose

the structure implied by a particular model from economic theory. Other points include

information delays, meaning that reaction to data is not possible instantaneously as it

is released only infrequently, physical contraints, insitutional knowledge and assumptions

about market structure.

Using restrictions from these sources one might also be able to reasonably assume

recursive identification in a specific order, which in turn would justify impulse response

analysis using Cholesky decomposition.

Another possibility is a different approach to finding the impulse responses that is

invariant to a change in the order of components. In Pesaran and Shin 1998, the authors

construct generalized impulse response functions which do not rely on orthogonalization.

Instead of relying on a Cholesky decomposition the authors obtain the impulse responses

by shocking the internally correlated error terms. Using an assumed or observed distribu-

tion of the errors, they then integrate out the effects created by correlation between the

individual error terms.
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In Jordà 2005, the author uses a local projections approach to compute impulse re-

sponses. This means, that the methodology does not rely on estimating the underlying

process - completely avoiding VAR estimation. The author states that this approach

has multiple advantages: simpler estimation, more robust to misspecification, easier in-

ference and easier accommodation of non-linear or flexible specifications. Barnichon and

Brownlees 2019 further develop this approach using smooth local projections to improve

precision, while keeping the advantages described before.

An interesting next step to this paper itself would be to perform a modified Monte

Carlo simulation in which many data generating processes are procedurally generated and

analysed as a whole, analogously to the analysis conducted in this paper. Doing so could

remove any doubt that the results found in the simulations provided in chapter 3 and

chapter 4 are special to the specific process chosen.

From a theoretical standpoint it would be interesting to further study the problems

described in equations 16 and 17. A theoretical analysis of P̃ , the matrix obtained via

Cholesky decomposition for an incorrect permutation, would enable us to describe the

incorrect theoretical impulse response functions, making it possible to further study the

effects of an incorrect order of components.
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8 Appendix

On page 7, realisation of the data generating process
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Figure 9: Realisation of the special data generating process

On page 13, realisation of the data generating process
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Figure 10: Realisation of the general data generating process
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On page 6; proof that A213B213 = [AB]213

AB =

a11 a12 a13

a21 a22 a23

a31 a32 a33


b11 b12 b13

b21 b22 b23

b31 b32 b33



=

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33

a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33



A213B213 =

a22 a21 a23

a12 a11 a13

a32 a31 a33


b22 b21 b23

b12 b11 b13

b32 b31 b33



=

a21b12 + a22b22 + a23b32 a21b11 + a22b21 + a23b31 a21b13 + a22b23 + a23b33

a11b12 + a12b22 + a13b32 a11b11 + a12b21 + a13b31 a11b13 + a12b23 + a13b33

a31b12 + a32b22 + a33b32 a31b11 + a32b21 + a33b31 a31b13 + a32b23 + a33b33


= [AB]213

(25)

It follows that

A213(A−1)213 = 13
213 = 13 ⇐⇒ (A−1)213 = (A213)−1 (26)
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