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1 Introduction

In modern economics, it is becoming increasingly common to use data measured at very

high frequencies. As the frequency of observing a variable increases, it often becomes

natural to view the data not as sequences of distinct observations but as smooth functions

describing a variable. This idea, to think of observations as measurements of a continuous

process, is the motivating thought behind functional data analysis, a branch of statistics

that has its origins in the 1940s and 1950s in the works of Ulf Grenander and Kari

Karhunen. Today, methods from functional data analysis are still relatively exotic in

economics, but they are beginning to gain traction. A typical question in economics

is whether observations from two or more data sets, e.g., data generated by treatment

and control groups, stem from the same data generating process. This question also oc-

curs in functional data analysis, where each observation in a data set is itself a smooth curve.

This thesis presents a test developed by Bugni and Horowitz 2021 trying to answer this

question. At the same time, this thesis provides the necessary theoretical background

to understand the construction of the test statistic. Therefore, Section 2 introduces the

necessary concepts from functional data analysis. Section 3 explores Cramér-von Mises

tests in a scalar setting and Section 4 introduces the theoretical foundations of permutation

testing. Then, Section 5 focuses on the test developed in Bugni and Horowitz 2021 for

the case of a two-sample test. The main contribution of this thesis is a variant of the

test presented in Bugni and Horowitz 2021 with the goal to test for specific violations

of the null hypothesis relating to the persistence of the data generating processes. This

variant of the original test is presented in Section 6. Section 7 presents a set of simulations

exploring the properties of the original test and shows a heuristic simulation to motivate the

proposed extension. Section 8 applies the test from Bugni and Horowitz 2021 to half-hourly

electricity demand data from Adelaide. Finally, Section 9 gives an outlook on possible

further extensions, addresses some problems and shortcomings of the presented results,

and outlines simulations that could be performed to better understand the properties of

the procedures described in this thesis.

Two additional aspects should be mentioned. First, all code and data used in this

thesis is available in the following public GitHub repository: https://github.com/

JakobJuergens/Masters_Thesis. Second, Appendix 11.1 gives a very informal descrip-

tion of the test scenario and the underlying idea of the test. It shall serve as a primer for

readers without prior knowledge of functional data analysis and permutation tests.
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2 Functional Data Analysis

The overarching concept of functional data analysis is to analyze data that are functional

in nature. In this context, functional observations can often be understood as smooth

curves and functional data sets, thus, consist of realizations of processes that generate

smooth curves. A classical example for a functional data set is shown in Figure 1. It

depicts growth curves of 93 humans up to the age of 18 provided by the R package fda1.
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Figure 1: Human Growth Curves up to the Age of 18

Even though measurements are only taken at discrete ages, it is clear that each human

has a height at every point in time. Thus, discrete data are only measurements of these

underlying continuous curves. The higher the measurement frequency, the closer the

data resemble the curves themselves. In many cases, functional data analysis restricts

its scope to observations in specific subsets of the functions f : R → R. As these are

inherently infinite-dimensional, it is beneficial to introduce theory to make use of their

unique properties. Sections 2.1 and 2.2 give an introduction to the necessary concepts

closely following Hsing and Eubank 2015. More information on specific topics such as

potential applications or the implementation in statistical software is given in Ramsay and

Silverman 2005 and Kokoszka and Reimherr 2021.

2.1 Hilbert Space of Square Integrable Functions

For many methods, such as functional linear regression, it is beneficial to put additional

restrictions on the analyzed functions. One typical assumption is that curves belong to the

space of square-integrable functions on a compact interval, which is a so-called separable

Hilbert space whose properties often simplify theoretical considerations in functional data

analysis. As Bugni and Horowitz 2021 assume square-integrability, the following section

introduces the concepts around Hilbert spaces in general and the space of square-integrable

functions in particular.

To define Hilbert spaces, it is necessary to first define inner product spaces as Hilbert

spaces are special cases of this larger category of spaces.

1Ramsay, Graves, and Hooker 2021.

2



Definition 2.1 (Inner Product)

A function ⟨·, ·⟩ : V2 → F on a vector space V over R is called an inner product if the

following four conditions hold for all v, v1, v2 ∈ V and a1, a2 ∈ R.

1. ⟨v, v⟩ ≥ 0

2. ⟨v, v⟩ = 0 if v = 0

3. ⟨a1v1 + a2v2, v⟩ = a1⟨v1, v⟩+ a2⟨v2, v⟩

4. ⟨v1, v2⟩ = ⟨v2, v1⟩

Definition 2.2 (Inner Product Spaces, Orthogonality, and Hilbert Spaces)

A vector space with an associated inner product is called an inner product space. Two

elements v1 and v2 of an inner product space are orthogonal if ⟨v1, v2⟩ = 0. An inner product

space that is complete with respect to the distance induced by the norm ∥v∥ =
√
⟨v, v⟩ is

called a Hilbert space.

As previously mentioned, Hilbert spaces play an important role in functional data analysis,

and many methods, such as functional linear regression, make extensive use of their

properties. In the context of this thesis, they are especially useful to describe objects such

as random functions. Analogously to vector spaces, it is useful to express elements of a

Hilbert space as linear combinations of a basis. To do so, the classical idea of a finite

basis used to express every element has to be extended. Hsing and Eubank 2015 define

the closed span and orthonormal sequences in the following way, leading to a subsequent

definition of bases for infinite-dimensional Hilbert spaces.

Definition 2.3 (Closed Span)

The closed span of a subset A of some normed space, e.g. a Hilbert space, is the closure of

span (A) with respect to the distance induced by the norm of the space. In the following

it is denoted by span (A).

Definition 2.4 (Orthonormal Sequence in a Hilbert Space)

Let {xn} be a countable collection of elements in a Hilbert space such that every finite

subcollection of {xn} is linearly independent. Define e1 =
x1

∥x1∥ and ei =
vi

∥vi∥ for

vi = xi −
i−1∑
j=1

⟨xi, ej⟩ej.

Then, {en} is an orthonormal sequence and span ({xn}) = span ({en})

These definitions lead to a natural analogon of the basis in finite-dimensional vector spaces

for the case of potentially infinite-dimensional Hilbert spaces.

Definition 2.5 (Orthonormal Basis of a Hilbert Space)

An orthonormal sequence {en} in a Hilbert space H is called an orthonormal basis of H if

span ({en}) = H. A Hilbert space that possesses a countable complete orthonormal basis

is called separable Hilbert space.
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Separable Hilbert spaces form a special class of Hilbert space. Their properties often

allow for significant simplifications in the derivation of theoretical properties of methods in

functional data analysis. One important property is that a countable complete orthonormal

basis {en} can be used to express elements of the separable Hilbert space as shown in

Equation 1 which will be used extensively in later parts of this thesis. One such case is

the calculation of specific test statistics at the core of Bugni and Horowitz 2021.

∀v ∈ H ∃ {ak}∞k=1 s.t. v =
∞∑
k=1

akek (1)

The most prevalent separable Hilbert space in functional data analysis is the space of square-

integrable functions on a compact interval. However, it is often interesting to consider

whether square-integrability is a necessary assumption. Due to its prevalence in functional

data analysis, square-integrability is sometimes assumed even though generalizations to

less restrictive function spaces might be possible.

Definition 2.6 (Hilbert Space of Square Integrable Functions)

The space of square-integrable functions on a compact interval I ⊂ R together with the

norm ⟨f, g⟩ =
∫
I f(t)g(t) dt is a Hilbert space, denoted by L2(I). A function f : I → R is

called square-integrable if the following condition holds.∫
I
[f(t)]2 dt <∞ (2)

It is defined as a space of equivalence classes, where two functions are equivalent if they

differ at most on a set of Lebesgue-measure zero.

Without loss of generality it is possible to reduce theoretical considerations to the case of

I = [0, 1]. Therefore, all treatment in this thesis focuses on the case of the unit interval.

Atypically, Bugni and Horowitz 2021 define two square-integrable functions to be distinct

if they differ on a non-empty set of Lebesgue-measure zero. However, as will become

apparent in later parts of this thesis, using this definition in the context of Bugni and

Horowitz 2021 only adds alternatives against which the test cannot have any power by

construction. In most parts of this thesis, it is, therefore, sufficient to consider only the

classical definition. However, in some places, it is necessary to use the definition from

Bugni and Horowitz 2021, and the relevant differences will be explicitly named in those

cases. An more general overview of the differences between the definitions is provided in

Appendix 11.2.
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2.2 Bases of L2[0, 1]

One commonly used orthonormal basis of L2[0, 1] is the Fourier Basis. It consists of a

series of functions
(
ψF
i (x)

)∞
i=1

taken from the sine-cosine form of the famous Fourier series.

ψF
i (x) =


1 if i = 1
√
2 cos(πix) if i is even

√
2 sin(π(i− 1)x) otherwise

(3)
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Figure 2: The first seven Fourier basis functions

A proof that the Fourier basis is a complete orthonormal basis of L2[0, 1] is given in section

2.4 of Hsing and Eubank 2015. As the Fourier basis is a countable orthonormal basis of

L2[0, 1], this proof also shows that L2[0, 1] is a separable Hilbert space. Many other bases

are often used in functional data analysis, such as b-splines and orthogonal polynomials. In

most cases, the choice of the basis is motivated by the desired application, and the Fourier

basis is typically chosen when the underlying process is assumed to generate periodical

functions.

2.3 Random Functions

As a next step, it is important to consider the processes that generate functional observa-

tions. In statistics, it is common to interpret data as realizations of random variables, and

in functional data analysis, the same holds true. However, since the observations are curves,

the objects of interest are random variables that generate functional realizations. These

are called random functions, and they are a special case of random variables. Paraphrasing

from Bauer 2011 a general random variable is defined in the following way.

Definition 2.7 (Random Variable)

Let (Ω,A,P) be a probability space and (Ω′,A′) be a measure space. Then every A-A′-

measurable function X : Ω → Ω′ is called a (Ω′,A′)-random variable.

Since random functions are a special case, it is possible to define them by specializing the

objects in Definition 2.7.

5



Definition 2.8 (Random Function)

A random variable that realizes in a function space with a corresponding σ-algebra, e.g.

L2[0, 1] with its associated Borel σ-algebra, is called a random function.

2.4 Probability Measures on L2[0, 1]

For the test developed in Bugni and Horowitz 2021, it is important to evaluate expectations

of a functional on L2[0, 1] with respect to some probability measure µ. Thus, it is necessary

to explore probability measures on L2[0, 1]. However, due to the way measures are

constructed in the paper, this description can be limited to probability measures induced

by existing random functions. To understand how a random variable induces a measure,

it suffices to look at a relatively basic fact from probability theory. Paraphrasing from

Bauer 2011, let X : (Ω,A,P) → (Ω′,A′) be a random variable, then a probability measure

PX(B) on A′ is induced by X as shown in Equation 4.

PX(B) = P(X ∈ B) = P(X−1(B)) ∀B ∈ A′ (4)

This idea specializes to the case of random functions realizing in L2[0, 1] and thereby

introduces the option to use measures induced by existing random functions. Therefore,

assume that Z(t) is a random function in L2[0, 1] inducing a measure µ. As illustrated

by Equation 1, Z(t) can be expressed in terms of a functional basis. However, as Z(t) is

inherently random the corresponding Fourier coefficients (bk)
∞
k=1 are random as well.

Z(t) =
∞∑
k=1

bkψk(t) s.t.
∞∑
k=1

b2k <∞ (5)

The latter property is needed to ensure the square-integrability of the random function. As

shown by this equation, a random function in L2[0, 1] is fully described by the distribution

of a countably infinite, square-summable sequence of scalar random variables bk. A general

treatment of the theory of random sequences is out of the scope of this thesis. However, it

is interesting to look at the relationship between the measure µ induced by the infinite

sum and the measure µK induced by its finite approximation shown in Equation 6.

ZK(t) =
K∑
k=1

bkψk(t) (6)

Understanding the relationship between these measures justifies using a finite number

of basis functions in the implementation of the test. Bugni, Hall, et al. 2009 show that

the measure µK induced by ZK(t) converges to the measure µ induced by Z(t) in the

following sense: Let A be a µ-measurable subset of L2[0, 1]. Then ∀a ∈ A, there is

a unique countably infinite sequence of Fourier coefficients b(a) = (bk(a))
∞
k=1 given by

bk(a) =
∫ 1

0
a(t)ψk(t)dt. As a ∈ L2[0, 1] these coefficients fulfill

∑∞
k=1 b

2
k <∞.
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To define the mode of convergence Bugni, Hall, et al. 2009 define the following objects.

• B = {b(a) | a ∈ A}

• BK = {(b1, . . . , bK) | ∃b′ ∈ B ∀k = 1, . . . , K bk = b′k}

• AK = {
∑∞

k=1 bkψk(t) | (b1, . . . , bK) ∈ BK and
∑∞

k=1 b
2
k <∞}

The authors then show that for any A in the Borel sigma algebra of subsets of L2[0, 1],

the following condition holds, where P denotes the probability measure associated with µ.

lim
K→∞

P(AK) = P(A) (7)

This argument allows using a truncated basis in the construction of a measure at a

reasonably high truncation parameter K as integrals with respect to µK over a functional

F(z) converge to their counterparts with respect to µ as K goes to infinity.

lim
K→∞

∫
L2[0,1]

F(z)dµK(z) =

∫
L2[0,1]

F(z)dµ(z) (8)

A more detailed treatment of these aspects is outside the scope of this thesis. Therefore,

this section shall primarily serve to give intuition. For readers interested in a more detailed

mathematical analysis, Gihman and Skorokhod 2004 and Skorohod 1974 give a rigorous

treatment of the necessary theory on measures, probabilities, and integration in Hilbert

spaces.

2.5 Functional Integration on L2[0, 1]

To evaluate the expected value mentioned at the beginning of Section 2.4, it is necessary to

integrate over a function space. Therefore, exploring the ideas of functional integration and

integration on separable Hilbert spaces is essential. The formal definition of a functional

integral over the functional G[f ] over L2[0, 1] is given by Equation 9 as a nesting of

countably many integrals over the joint distribution of the Fourier coefficients.∫
L2[0,1]

G [f ] [Df ] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
G (f1, f2, . . . )

∏
n

dfn (9)

An in-depth treatment of integration on Hilbert spaces is out of the scope of this thesis. A

detailed overview of integration on Hilbert spaces is given in Skorohod 1974 and could be

used to derive theoretical properties in a more general setting. Functional integrals over

Hilbert spaces often do not have closed-form solutions. Instead, it is necessary to evaluate

them using methods from perturbation theory. An introduction to the necessary theory is

given in Jeribi 2021.
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Because of the nature of the test in Bugni and Horowitz 2021, using these methods

for approximation would be inadvisable due to the computational cost. Nevertheless,

perturbation theory could be an interesting approach for theoretical considerations on

the properties of Cramér-von Mises type tests in a functional setting. Instead, Bugni and

Horowitz 2021 use Monte-Carlo integration to calculate a test statistic that is based on a

functional integral. At this point, it is, thus, more beneficial to introduce Monte-Carlo

integration with respect to some measure induced by a random variable. To illustrate the

principle, assume that the following integral has a fixed value in R and that µ is induced

by a continuous, scalar-valued random variable Z realizing in [0, 1].

V =

∫ 1

0

g(x)dµ(x) =

∫ 1

0

g(x)fZ(x)dx where g : [0, 1] → R (10)

Assuming that it is possible to draw independent realizations of Z, an intuitive approach

to approximate V is given by the Equation 11.

V̂ =
1

n

n∑
i=1

g(Zi) where Zi ∼i.i.d. Z i = 1, . . . , n (11)

This approach is justified because V̂ →p V by the law of large numbers. Therefore,

assuming that the expectation is finite, this approach can give approximations of the

expectation that converge to the correct value as the number of realizations of Z goes

to infinity. As the principle of this method does not depend on the domain of g, it can

analogously be used in the context of function spaces. It gives a convenient alternative to

the theoretically complex methods mentioned before and is, therefore, a useful alternative

in the context of this thesis. More information on Monte-Carlo methods in general and, in

particular, Monte-Carlo integration can be found in Shonkwiler and Mendivil 2009.

3 Cramér-von Mises Tests

The second prerequisite to understanding the test presented in Bugni and Horowitz 2021

is some knowledge about two-sample Cramér-von Mises (abbreviated as CvM in the

following) type tests. To understand their working principle, it is useful to start in a

simple setting, which is why this section is limited to the case of scalar random variables.

As mentioned in the introduction, it is often interesting to ask whether the same stochastic

process generated the observations in two distinct data sets. In an experimental setting,

one could ask whether a treatment assigned at random to a subset of agents changed

the distribution of an outcome variable. The two-sample CvM test is one approach to

answering this question.

8



3.1 Empirical Distribution Functions

The idea of CvM type tests is to compare the distribution functions of the underlying

random variables. However, as these are typically unknown, it is necessary to define a

sample analog to construct a suitable test statistic. Gibbons and Chakraborti 2021 define

the order statistic of an observation in a sample and the empirical distribution function in

the following ways, allowing the construction of a test statistic.

Definition 3.1 (Order Statistic)

Let {xi | i = 1, . . . , n} be a random sample from a population with continuous cumulative

distribution function FX . Then there almost surely exists a unique ordered arrangement

within the sample.

x(1) < x(2) < · · · < x(n)

Then, x(r) r ∈ {1, . . . , n} is called the rth-order statistic.

Definition 3.2 (Empirical Distribution Function)

Assuming a continuously distributed random variable where there are no binds in a sample

{xi | i = 1, . . . , n} with probability one, the Empirical Distribution Function derived from

the sample is defined as the following step function.

F̂n(x) =


0 if x < x(1)

r
n

if x(r) ≤ x < x(r+1)

1 if x ≥ x(n)

(12)

An example showing the empirical distribution function for a selection of samples drawn

from a standard normal distribution is given in Figure 11 in Appendix 11.8. As this plot

illustrates, the empirical distribution function gets increasingly close to the theoretical

distribution function of the underlying random variable as the number of realizations

increases. In fact, the strong law of large implies that F̂n(x)
a.s.→ F (x) ∀x implying that

F̂n(x) is a consistent estimator of F (x).

3.2 Null Hypothesis

As previously mentioned, the null hypothesis of CvM tests relates to distributional equality

of random variables. To formulate the precise null hypothesis, let {x1, . . . , xn} and

{y1, . . . , ym} be two data sets generated by continuous random variables X ∼i.i.d. F (t) and

Y ∼i.i.d. G(t). The null hypothesis that both samples were generated by random variables

following the same cumulative distribution function is then formulated as follows.

H0 : F (t) = G(t) ∀t ∈ R

H1 : ∃t ∈ R s.t. F (t) ̸= G(t)
(13)

9



3.3 Two-Sample Cramér-von Mises Statistic

The CvM test is motivated by the idea that differences between the empirical distribution

functions should be small under the null hypothesis. The test statistic is based on

the integrated squared difference of the empirical distribution functions to quantify the

difference between two functions. Adapting a definition from Büning and Trenkler 2013, it

is defined as shown in Equation 14.

Cm,n =
nm

n+m

∫ ∞

−∞

(
F̂m(t)− Ĝn(t)

)2
d

(
mF̂m(t) + nĜn(t)

m+ n

)
(14)

Darling 1957 gives an overview on the CvM test and some related tests in both the

one-sample goodness-of-fit and the two-sample setting. Anderson 1962 explores the small

sample distribution of the two-sample test statistic and provides a comparison to the

limiting distribution derived by Rosenblatt 1952 and Fisz 1960 which is given in Section

11.3 in the Appendix. These distributions can be used to perform tests with appropriate

critical values and have been implemented in many packages for statistical computing.

It is possible to generalize this test by introducing a weight function w(t) as shown in

Equation 15.

TEDF
m,n =

nm

n+m

∫ ∞

−∞

(
F̂m(t)− Ĝn(t)

)2
w(t) d

(
mF̂m(t) + nĜn(t)

m+ n

)
(15)

The CvM test corresponds to w(t) = 1. It is advisable to think about the desired properties

of the test when choosing a specific weight function as it can affect the power against

different types of alternatives. A well-known weight function for the one-sample CvM

goodness of fit test was proposed by Anderson and Darling 1952 and Anderson and

Darling 1954 and adapted to the two-sample setting by Pettitt 1976. The latter is given

by w(t) =
[(

mF̂m(t)+nĜn(t)
m+n

)(
1− mF̂m(t)+nĜn(t)

m+n

)]−1

and has been shown to have better

properties in some scenarios as it assigns higher weight to observations that correspond to

the tails of the distribution.

4 Permutation Tests

The third component to understanding Bugni and Horowitz 2021 is understanding the

principles of permutation testing. In layman’s terms, the idea of a permutation test is the

following: if two samples show distinctly different properties, that will lead to differences

in an appropriately chosen summary statistic. If one were to permute the elements of

the samples randomly, one would expect these differences in the summary statistics to

disappear. Permutation tests formalize this intuition. The following section closely follows

chapter 15 from Lehmann and Romano 2005.
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4.1 Functional Principle of Permutation Tests

One of the defining features of a test is its null hypothesis. In the case of randomization

tests, which are a generalization of permutation tests, it is often formulated in the sense of

distributional equality. This makes the approach particularly interesting for the questions

studied in this thesis.

Let X be a random variable realizing in a sample space X . Then, the null hypothesis

in randomization testing is that the distribution P generating X belongs to a family

of distributions Ω0. For this very general setting, Lehmann and Romano 2005 define

an assumption called the randomization hypothesis that allows for the construction of

randomization tests.

Assumption 4.1 (Randomization Hypothesis)

Let G be a finite group of transformations g : X → X . Under the null hypothesis of the

randomization test, the distribution of X is invariant under the transformations g ∈ G. In

other words, gX and X have the same distribution whenever X has distribution P ∈ Ω0.

For example, recall the scalar CvM test presented in Section 3. Under the null hypothesis,

both X and Y follow the same distribution. As the random samples generated by both

random variables are assumed to be independent, permuting the observations within and

across samples will not change their joint distribution. Therefore, in this simple setting,

the randomization hypothesis is fulfilled. The same argument trivially applies in the

functional setting, justifying the use of a permutation test in Bugni and Horowitz 2021.

Under the randomization hypothesis one can construct a permutation test based on any

test statistic T : X → R that is suitable to test the null hypothesis under consideration.

Suppose that G has M elements, then given X = x, let

T(1)(x) ≤ T(2)(x) ≤ · · · ≤ T(M)(x)

be the ordered values of the test statistic T (gx) as described in Definition 3.1 as g varies

over G. For a fixed nominal level α ∈ (0, 1), define k = M − ⌊Mα⌋ and the following

objects.

M+ =
M∑

m=1

1
[
T(m)(x) > T(k)(x)

]
M0 =

M∑
m=1

1
[
T(m)(x) = T(k)(x)

]
(16)

Using these objects, it is possible to define a test function that decides whether the null

hypothesis is rejected based on the value of the test statistic calculated on the non-permuted

samples T = T (x) and a chosen size α for the test.

11



Definition 4.1 (Randomization Test Function)

The Randomization Test Function is a function ϕ : X → R defined in the following way.

ϕ(x) =


1 if T > T(k)(x)

a if T = T(k)(x)

0 if T < T(k)(x)

where a =
Mα−M+(x)

M0(x)

This function can be interpreted as a decider of whether the corresponding null hypothesis

is rejected. If ϕ(X) = 1, the null hypothesis is rejected, if ϕ(X) = 0 it cannot be rejected,

and if ϕ(X) = a, the decision is randomized using a Bernoulli variable that is 1 with

probability a. Under Assumption 4.1, it is possible to show that, given a test statistic

T (X), the resulting test ϕ has size α.

EP [ϕ(X)] = α ∀P ∈ Ω0 (17)

This effectively means that a randomization test constructed in the described way always

has the correct specified size. However, the power against alternatives can be highly

sensitive to both the sample sizes and the number of transformations M . Similarly, the

p-value of a randomization test given X = x is calculated as shown in Equation 18.

p-value =
1

M

∑
g∈G

1 [T (gx) ≥ T (x)] (18)

Lehmann and Romano 2005 explore the example of testing for the equality of the generating

probability laws of two independent samples of scalar random variables. This is precisely

the relevant application for the permutation variant of the two-sample CvM test that

Bugni and Horowitz 2021 extend to the setting of functional data. In this two-sample

setting, the transformation is applied to the combined sample. The transformed sample is

then split again forming two samples to fit the structure of the original data set. Up to

this point, the transformations g ∈ G are still very general. In most scenarios, it is useful

to specialize the kinds of transformations that are applied to the data to the permutations

of the sample under consideration.

Definition 4.2 (Permutation)

Let S be a set, then a permutation of S is a bijective function π : S → S.

If S is a finite set with N elements, there are N ! different permutations. Applying this idea

to the setting of two samples with n and m observations respectively, there are (n+m)!

permutations in the combined set of observations. One way of describing the corresponding

group of transformations G is shown in Equation 19.

ΠN = {π : {1, . . . , N} → {1, . . . , N} | π is bijective}

G =
{
g : RN → RN | ∃π ∈ ΠN ∀x ∈ RN g(x) =

(
xπ(1), . . . , xπ(N)

)} (19)
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Using G as described in Equation 19 in the construction of a randomization test leads to the

concept of permutation tests. These are special cases of the testing procedure introduced

before and rely on the specific choice of G. Assuming that the test statistic is invariant

over intra-sample permutations, it is possible to obtain identical results using combinations

instead of permutations. As the number of combinations is
(
m+n
m

)
and thereby considerably

smaller than the number of permutations, this approach can be beneficial. In reality,

however, it is often infeasible to calculate a test statistic on all M permuted samples.

Therefore, it is typical to randomly sample a chosen number B of permutations used

to approximate the corresponding values. These stochastic approximations are justified

for large numbers of sampled permutations, as the corresponding p-values converge in

probability to the p-value associated with the test using all permutations.

For the implementation of the test described in Bugni and Horowitz 2021 used in this

thesis, distinct combinations are chosen if it is feasible to calculate the test statistic for

all combinations. If this approach is infeasible due to the number of combinations, the

implementation resorts to randomly sampling permutations with replacement instead.

4.2 Asymptotic Properties

One interesting question concerning the properties of permutation tests is their behavior

when the number of observations goes to infinity. This section explores these properties,

closely following 15.2.2 from Lehmann and Romano 2005. To study the asymptotic prop-

erties of permutation tests, it is useful to define the so-called randomization distribution.

Definition 4.3 (Randomization Distribution)

The randomization distribution of a test statistic T is defined by the following distribution

function where M = |G| is the number of transformations in G.

R̂(t) =
1

M

∑
g∈G

1 [T (gX) ≤ t]

It describes the distribution of the test statistic T under a uniformly distributed choice of

transformation g. As X is itself a random variable, R̂(t) is random too.

It is additionally beneficial to consider not only a sequence of samples increasing in size

but a sequence of settings where the prerequisite objects change accordingly. Consider

therefore a sequence of settings with X = XN , P = PN , X = XN , G = GN , T = TN etc.

for an increasing number of observations N . Defining the randomization distribution of

TN analogously to Definition 4.3 as R̂N (t) =
1

MN

∑
g∈GN

1
[
TN(gX

N) ≤ t
]
it is possible to

analyze the limiting behavior of R̂N (t) as N → ∞ to understand the asymptotic properties

of the permutation test. It is possible to show that for a random variable GN that is

uniformly distributed on GN and independent of XN , Equation 20 holds true under the

randomization hypothesis.

13



E[R̂N(t)] = P
[
TN(GNX

N) ≤ t
]
= P

[
TN(X

N) ≤ t
]

(20)

Assuming that TN (X
N ) converges in distribution to a stable limiting distribution with cumu-

lative distribution function R(t) which is continuous at t, it follows that E[R̂N (t)] → R(t).

Under some conditions it is additionally possible to show that R̂N(t) →P R(t) at all

continuity points t of R(t). The proof of the latter statement presented in Lehmann and

Romano 2005 courtesy of Hoeffding 1952 is given in Appendix 11.4.

It should be noted that to make use of the stable limiting distribution of, for example, the

CvM test, as described in Appendix 11.3, it is necessary to let the ratio of observations

in the two samples, n and m, go to a constant λ as the total number of observations N

increases. A similar argument is necessary in the case of the CvM type test in Bugni and

Horowitz 2021.

5 Test by Bugni and Horowitz (2021)

Similar to the idea of the CvM test in a scalar setting, Bugni and Horowitz 2021 devise a

test for the equality of the distributions of the data generating processes of two indepen-

dent random samples of functional data. To define the exact hypothesis, they define a

distribution function for random variables realizing in L2[0, 1] as follows.

Definition 5.1 (Distribution Function of a Random Function)

Let X : Ω → L2[0, 1] be a random function realizing in the space of square-integrable

functions. Then its distribution function is defined as the following object.

FX(z) = P [X(t) ≤ z(t) ∀t ∈ [0, 1]] z ∈ L2[0, 1]

As previously mentioned, the authors assume that two functions z1, z2 ∈ L2[0, 1] are

distinct even if they only differ on a set of Lebesgue-measure zero. In this case, this

distinction is important to define the distribution function appropriately. This can be seen

by checking whether the distribution function evaluated at two functions from the same

equivalence class will necessarily evaluate to the same value, which is trivially not the case.

Therefore, for the definition of the distribution function of a random variable in the sense

of Bugni and Horowitz 2021, it is necessary to use their definition of L2[0, 1]. However, as

previously mentioned, this distinction will not have an influence in practice due to the

construction of the test statistic and the chosen measure.

5.1 Assumptions

The authors explicitly make four assumptions, some of which can be relaxed to allow for a

more general setting.
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Assumption 5.1

1. X(t) and Y (t) are separable, µ-measurable stochastic processes

2. {Xi(t) | i = 1, . . . , n} is a random sample of the process X(t).

{Yi(t) | i = 1, . . . ,m} is a random sample of Y (t) independent of {Xi(t) | i = 1, . . . , n}.

As this assumption contains multiple points, it is useful to address them individually.

• µ is a measure chosen by the researcher, and its construction is explored in detail in

Section 5.5.

• The assumptions from the scalar CvM test, independence of observations within sam-

ple, and independence between the samples, carry over to allow for the construction

of a CvM type test in a functional setting.

• The CvM type test hinges on the measurability of the processes with respect to the

chosen measure µ. Therefore, measurability with respect to µ must be fulfilled for

the test to be applicable. As µ is a measure on L2[0, 1] this assumption entails that

the processes have to realize in L2[0, 1].

• Separability of the stochastic processes is a less common assumption. Paraphrasing

from Gihman and Skorokhod 2004, a separable stochastic process is defined as shown

in Definition 5.2.

Definition 5.2 (Separable Stochastic Process)

A real-valued random function X(t, ω) – here denoted explicitly as a function of ω – with

an associated probability space (Ω,F ,P) is separable if:

1. There is a dense countable subset I ⊂ T of its index set T

2. There is a set Ω0 ⊂ Ω with P (Ω0) = 0 such that for an arbitrary open set G ⊂ T

and an arbitrary closed set F ⊂ R the two sets {ω | X(t, ω) ∈ F ∀t ∈ G} and

{ω | X(t, ω) ∈ F ∀t ∈ G ∩ I} differ from each other at most on Ω0

In less theoretical terms, this means that the properties of the process are determined by

its behavior on a countable subset of points of its index set. This assumption is helpful

in proving some results on the asymptotic properties of the CvM statistic that rely on

specific measurability properties. However, this assumption could potentially be relaxed if

weaker restrictions on the processes are sufficient to provide the necessary properties.

Assumption 5.2

E [X(t)] and E [Y (t)] exist and are finite for all t ∈ [0, 1].

Assumption 5.2 is necessary for one of the two tests used in Bugni and Horowitz 2021.

The test is based on the squared difference between the sample mean functions to detect

differences in the respective mean functions. Therefore it relies on the existence and

finiteness of the mean functions in every point of the domain.
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Assumption 5.3

Xi(t) and Yi(t) are observed for all t ∈ [0, 1].

Assumption 5.3 can be relaxed, and a similar test can be constructed for the case of

discretely observed processes. This variation of the test will not be addressed explicitly in

this thesis. However, Bugni and Horowitz 2021 describe how to extend their idea to this

common scenario. Some of the simulations presented in later parts of this thesis make use

of this extension.

5.2 Null Hypothesis and Related Tests

As with most permutation tests, the null hypothesis of the test presented by Bugni and

Horowitz 2021 is distributional in nature. In the following let F (z) denote the distribution

function of the random function X(t) and G(z) denote the distribution function of the

random function Y (t). Then the null hypothesis can be formulated in the following way.

H0 : F (z) = G(z) ∀z ∈ L2[0, 1]

H1 : Pµ [F (Z) ̸= G(Z)] > 0
(21)

Here, µ is a probability measure on L2[0, 1] and Z is a random function realizing in L2[0, 1]

with a distribution induced by µ. As can be seen, by the formulation of the hypothesis,

this test does not intend to have power against alternatives that differ only on a set

of functions with µ-measure zero. The choice of the measure is an important factor to

consider when trying to use this test against a specific suspected alternative. Additionally,

due to the way the measure is constructed and approximated, which is described in Section

5.5, alternatives that are based on functions that are identical almost everywhere always

have µ-measure zero.

Tests for this hypothesis exist in some forms already, and the following list shall give a

non-exhaustive overview of other procedures that could be applied. Hall and Tajvidi 2002

formulate a permutation test for high-dimensional data that can also be functional. Their

permutation test is based on pairwise distances between observations and the number

of observations from each sample that are smaller than a reference value. Hall and Van

Keilegom 2007 develop a very similar approach to Bugni and Horowitz 2021 by using the

integrated squared difference between estimates of the empirical distribution functions.

However, their approach is not based on a permutation test but on bootstrapping to

derive critical values for a test and specific smoothing approaches for the observed data.

Additionally, their method uses the Karhunen-Loève expansion to construct a measure in

a similar sense as presented in this thesis. Pomann, Staicu, and Ghosh 2016 develop a

framework for discretely observed functional curves using a marginal functional principal

components approach to reduce the problem to a finite number of dimensions. Their

approach then makes use of finite-dimensional variants of tests such as the Anderson-
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Darling test mentioned in Section 3. Corain et al. 2014 propose a test using so-called

derived variables that are calculated from the data, such as, for example, the functional

principal components. They reformulate the null hypothesis in terms of these derived

variables and suggest a framework combining multiple dependent randomization tests for

the individual hypotheses relating to the different derived variables.

5.3 Cramér-von Mises type Test

Similar to the CvM test described in Section 3, the test constructed by Bugni and Horowitz

2021 relies on the empirical distribution functions describing the samples. Therefore, it is

necessary to define empirical distribution functions for the functional setting:

F̂n(z) =
1

n

n∑
i=1

1
[
Xi(t) ≤ z(t) ∀t ∈ [0, 1]

]
Ĝm(z) =

1

m

m∑
i=1

1
[
Yi(t) ≤ z(t) ∀t ∈ [0, 1]

]
(22)

As in the scalar setting described in Section 3, the idea of the test is that the differences

between these empirical distribution functions are expected to be comparatively small

under the null hypothesis. This difference can be quantified using the integrated squared

difference leading to the following equation.

τ =

∫
L2[0,1]

[F (z)−G(z)]2 dµ(z) (23)

As the distribution functions are typically unknown, it is possible to construct a test

statistic using the empirical distribution functions as shown in Equation 24.

τn,m = (n+m)

∫
L2[0,1]

[
F̂n(z)− Ĝm(z)

]2
dµ(z) (24)

As algebraic functional integration is unsuitable for this testing procedure due to the

structure of the underlying objects, the authors use Monte-Carlo integration as explained in

Section 2.5 for approximating this integral. To perform the test, it is, therefore, necessary

to choose a parameter L that determines the number of functions {Zl | l = 1, . . . , L} that

is used to approximate the value of τn,m by the following equation.

τ̂n,m =
n+m

L

L∑
l=1

[
F̂n(Zl)− Ĝm(Zl)

]2
(25)

These functions are drawn from a random function associated with the chosen measure

µ, and their construction is explained in more detail in Section 5.5. At this point, it is

interesting to ask whether Monte-Carlo integration is a suitable approach in this specific

setting; in other words, whether the mean of
[
F̂n(z)− Ĝm(z)

]2
with respect to µ exists

and is finite.
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Assuming existence, which depends on the chosen measure, an argument for finiteness

is given in Appendix 11.5. Using the theory from Section 4 the critical values for the

permutation test statistic are then calculated in the following way.

t∗,τn,m(1− α) = inf

{
t ∈ R | 1

Q

Q∑
q=1

1 [τn,m,q ≤ t] ≥ 1− α

}
(26)

Here τn,m,q denotes the test statistic calculated on the samples permuted using permutation

q, assuming that Q permutations were considered overall. With these critical values, it is

now possible to perform the test at a chosen significance level α.

5.4 Asymptotics for the Cramér-von Mises type Test

Similar to the case presented in Bugni, Hall, et al. 2009, it is possible to derive an

asymptotic distribution for the CvM type test. Even though this is not necessary to

perform the described permutation test, it could be an interesting benchmark to compare

the test procedure in future large sample simulations. The authors mention that under

the null hypothesis and mild regularity conditions, 1√
n+m

[
F̂n(z)− Ĝm(z)

]
converges to a

mean zero Gaussian process Υ(z) z ∈ L2[0, 1]. Here, F (z) and G(z) again denote the

distribution functions corresponding to the samples and F̂n(z) and Ĝm(z) their empirical

equivalents. Υ(z) has the covariance function shown in Equation 27.

cov [Υ(z),Υ(z̃)] =
(1 + λ)2

λ
{G(min (z, z̃))−G(z)G(z̃)}

where min(z, z̃)(t) = min (z(t), z̃(t)) ∀t ∈ [0, 1]

(27)

As in the case of the limiting distribution of the scalar CvM test described in Appendix

11.3, λ denotes the limiting ratio of observations in the two samples as N = n+m→ ∞,

meaning n
m

→ λ. Thus, the following limiting distribution can be obtained for τn,m.

τn,m →d

∫
L2[0,1]

Υ2(z) dµ(z) (28)

The derivation of this limiting distribution follows a similar argument as the proof of

Theorem 3.1 given in Bugni, Hall, et al. 2009. It is presented in the supplementary material

of Bugni and Horowitz 2021. Using the arguments presented in the proof and in Section

4.2, it is possible to show that this limiting distribution also applies to the permutation

variant of the CvM type test described in this thesis. In the context of the limiting

distribution, it is again necessary to consider the implications of the definition of L2[0, 1]

as given by Bugni and Horowitz 2021. Even though this distinction is not considered in

detail in this thesis, for theoretical considerations of this test, it is vital that, for example,

Υ(z) is defined with respect to the definition of L2[0, 1] from Bugni and Horowitz 2021.
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5.5 Construction of the Measure µ

As can be seen in the fact that the alternative is formulated with respect to a measure

µ on L2[0, 1], this measure significantly impacts the test’s performance. Compared to

the scalar CvM test described in Section 3, it fulfills a similar purpose to the weight

function described in Section 3.3 in that it determines against which alternatives the test

has comparatively high power. It is, therefore, crucial to choose the measure according to

the kind of violation of the null hypothesis that is suspected. If no specific violation is

expected, a choice similar to a constant weight function can be made. In a scalar CvM type

test, a constant weight function gives the same weight to the whole domain. Intuitively

this corresponds to some uniform distribution on L2[0, 1] which does not exist. Instead,

the original authors refer to a constant mean function of the inducing random variable.

As hinted at in Section 2.4, Bugni and Horowitz 2021 approach the problem of choosing

a measure by constructing a random function Z(t) that induces a suitable probability

measure µ. This random function is constructed as shown in Equation 29.

Z(t) =
∞∑
k=1

bkψk(t) s.t.
∞∑
k=1

b2k <∞ (29)

By truncating the random function to use a finite amount of basis functions, as shown in

Equation 30, it is possible to draw realizations from it. As explained in Section 2.4, the

measure induced by this truncated random variable converges to the measure induced by

the full random variable as the truncation parameter K goes to infinity. This fact justifies

the approach theoretically.

ZK(t) =
K∑
k=1

bkψk(t) (30)

The construction hinges on specifying appropriate distributions for the Fourier coefficients

(bk)
K
k=1. To obtain a reasonable degree of power, it is crucial to specify the distribution of the

random function Z(t) such that its realizations are able to distinguish potential differences

in the samples. This could for example be done by choosing a function w(t) : [0, 1] → R
specifying the expectation of Z(t) dependent on the data. Calculating the expected values

of the Fourier coefficients as shown in Equation 31 then leads to the expected value of the

random function ZK(t).

E [bk] =

∫ 1

0

w(t)ψk(t) dt leading to E [ZK(t)] =
K∑
k=1

E [bk]ψk(t) (31)

Lastly, a distribution around the expected value has to be specified. In Equation 32 this

takes the form of random errors Uk and non-stochastic square-summable factors (ρk)
∞
k=1.

bk = E [bk] + ρkUk s.t.
∞∑
k=1

ρ2k <∞ (32)
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The authors suggest choosing w(t) to be comparatively large where differences between

processes in the two samples are expected to be large. However, if no prior exists, a choice

has to be made nevertheless. The following mean functions are shown in Figure 3.

1. In their application, Bugni and Horowitz 2021 set the distribution of the Fourier

coefficients manually, as b1 ∼ N (µ1,
1
K
) and bk ∼ N (0, 1

K
) k = 2, . . . , K where

µ1 = mediani

{
max
t∈[0,1]

Xi(t) | i = 1, . . . , n,

}
This method is equivalent to setting w(t) = µ1 ∀t ∈ [0, 1], as the inner product of

any constant function with Fourier basis functions of order two or higher will be

zero due to their cyclical nature.

2. Another idea is to choose a non-constant weight function based on sample 1. One

option is to use specific point-wise quantiles w(t) = quantileq{Xi(t) | i = 1, . . . n}.
This allows the generated functions for the approximation of the CvM statistic to

resemble the reference data more closely, which could improve the test’s properties.
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Figure 3: Mean Functions calculated for a Reference Sample

In addition to the mean function w(t), the choice of the sequence (ρk)k∈N and the distribu-

tion of the error terms Uk is of importance. The authors do not recommend a procedure

for choosing (ρk)
∞
k=1. However, it seems reasonable to choose parameters that lie in the

vicinity of the standard deviations for the Fourier coefficients of the reference sample when

fitting a Fourier basis to the original observations. Other methods, such as specifying a

sequence without considering the data, are possible. For example, in the application part

of Bugni and Horowitz 2021, the authors use 1
K

for every Fourier coefficient. Concerning

the choice of distribution for Uk, the authors recommend different distributions depending

on the properties of the samples. The authors recommend one of the following choices for

samples that indicate a thin-tailed distribution of X(t).

• Uk ∼ N (0, 1) • Uk ∼ Unif [−3
1
3 , 3

1
3 ]

If instead, the sample hints at a heavy-tailed distribution, one should consider a heavy-

tailed distribution for the Fourier coefficients, such as a t-distribution with a low number

of degrees of freedom.
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5.6 Mean-focused Test

In addition to the CvM type test, the authors introduce a second test statistic aimed at

detecting violations due to a mean shift in the data generating process. This test is added

due to low power against pure mean shift alternatives of the CvM type test in the original

paper’s simulations. It is supposed to complement this weakness of the other test statistic.

The variable ν on which this second test is based is the distance between the mean functions

of the data generating processes as induced by the natural norm on L2[0, 1].

ν =

∫ 1

0

(
E [X(t)]− E [Y (t)]

)2
dt (33)

Replacing the expected values with their sample equivalents leads to a test statistic that

can be used to perform a permutation test. The sample equivalents are defined as shown

in Equation 34 and the resulting test statistic is shown in Equation 35.

Ê [X(t)] =
1

n

n∑
i=1

Xi(t) Ê [Y (t)] =
1

m

m∑
i=1

Yi(t) (34)

νn,m = (n+m)

∫ 1

0

[
Ê [X(t)]− Ê [Y (t)]

]2
dt (35)

In the same way the critical values for the CvM test are derived using the techniques

described in Section 4.2, the critical values for the mean-based test are calculated as shown

in Equation 36. Analogous to the previous case, νn,m,q denotes the test statistic calculated

on the permuted samples corresponding to permutation q.

t∗,νn,m(1− α) = inf

{
t ∈ R | 1

Q

Q∑
q=1

1 [νn,m,q ≤ t] ≥ 1− α

}
(36)

Similarly to the CvM type test, it is possible to show that νn,m weakly converges to a

mean-zero Gaussian process as n → ∞, m → ∞ and n
m

→ λ. As explained before, this

limiting distribution carries over to the permutation test under the conditions outlined in

Section 4.

At this point, it is interesting to mention that this test could be used on its own if the

null hypothesis were limited to the equality of the mean functions of the data-generating

processes. This could be done both using the permutation variant described in this thesis

but also using the limiting distribution as described by the original authors. This is an

interesting question in many applied contexts, and it would be interesting to study the

individual test’s properties compared to existing tests.
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5.7 Combined Permutation Test

Using the test statistics described in Sections 5.3 and 5.6, it is possible to combine both

into one test, trying to harness the advantageous properties of both tests. Therefore,

define for the two underlying tests the following permutation test functions as described

in Definition 4.1.

ϕn,m =


1 if τn,m > t∗n,m(1− ατ )

aτ if τn,m = t∗n,m(1− ατ )

0 if τn,m < t∗n,m(1− ατ )

ϕ̃n,m =


1 if νn,m > t∗n,m(1− αν)

aν if νn,m = t∗n,m(1− αν)

0 if νn,m < t∗n,m(1− αν)

(37)

Here, aτ and aν are once again given by the following equations to ensure that the expected

values of ϕ and ϕ̃ have the desired values.

• aτ = Qατ−Q+
τ

Q0
τ

• Q+
τ =

∑Q
q=1 1

[
τn,m,q > t∗n,m(1− ατ )

]
• Q0

τ =
∑Q

q=1 1
[
τn,m,q = t∗n,m(1− ατ )

]
• aν = Qαν−Q+

ν

Q0
ν

• Q+
ν =

∑Q
q=1 1

[
νn,m,q > t∗n,m(1− αν)

]
• Q0

ν =
∑Q

q=1 1
[
νn,m,q = t∗n,m(1− αν)

]
By the theoretical considerations of Section 4.2, it is clear that under Assumption 5.1 and

5.2, under the null hypothesis and for any ατ , αν ∈ (0, 1), the following statements hold.

This means that regardless of most choices that had to be made during the construction

of the test, the size of the individual tests will be equal to the corresponding α.

EP (ϕn,m) = ατ EP

(
ϕ̃n,m

)
= αν (38)

To combine the two tests, the authors use the well-known Bonferroni correction. It is used

to adjust the individual tests’ levels to control the family-wise error rate of the combined

procedure, where the null hypothesis is rejected if either test indicates a violation at the

adjusted level. Under H0 this approach leads to the following relationship motivating a

choice of ατ +αν = α for a chosen overall size for the combined test of α. More information

on the Bonferroni correction is given in Appendix 11.6.

max(ατ , αν) ≤ P
[
(ϕn,m > 0) ∪ (ϕ̃n,m > 0)

]
≤ ατ + αν (39)

One critique of this approach is that combined tests constructed using a Bonferroni

correction are typically conservative. However, even though more advanced techniques

can be used in some settings to combat this problem, this seems infeasible for the case

of the test statistics presented in Bugni and Horowitz 2021. Additionally, this procedure

introduces another choice as the values of ατ and αν can be specified freely under the

constraint that they add up to a chosen significance level for the combined procedure. In

an applied setting, it is not trivial what the optimal choice of these values is.
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5.8 Asymptotic Properties under the Alternative

As alluded to in Sections 3 and 5.3, for the asymptotic properties of the test, it is useful

to make another assumption on the sequence of tests that is considered as the number of

observations goes to infinity.

Assumption 5.4

As N = m+ n→ ∞ let n
m

→ λ for some λ ∈ R>0.

This assumption allows the derivation of a stable limiting distribution and helps with the

asymptotic properties of the test if the null hypothesis is incorrect. Under Assumptions

5.1 and 5.4, Bugni and Horowitz 2021 show that the following statement holds.∫
L2[0,1]

[F (z)−G(z)]2 dµ(z) > 0 =⇒ lim
N→∞

P
[
τn,m > t∗,τn,m(1− ατ )

]
= 1 ∀ατ ∈ (0, 1)

(40)

If additionally Assumption 5.2 holds, then the analogous statement holds for the mean-

focused test.∫ 1

0

[E [X(t)]− E [Y (t)]]2 dt > 0 =⇒ lim
N→∞

P
[
νn,m > t∗,νn,m(1− αν)

]
= 1 ∀αν ∈ (0, 1)

(41)

The combination of these statements can be used to show that the combined test is

consistent.

5.9 Problematic Curve Fitting

One crucial question in implementing the method is whether to employ curve-fitting

using a functional basis. It seems natural to fit the same basis to the data that is used

for constructing the measure. Then the comparison between functions necessary for

approximating the CvM type statistic is reduced to a problem of finding the zeroes of a

finite Fourier-series, which could be approached with methods such as those presented

in Boyd 2006. However, this can lead to problems illustrated by Figure 4, which shows

curves that were fitted to samples generated by two data generating processes.

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00

rho = −0.9

Figure 4: Artifact of the Curve Fitting Procedure
Sample 1 in red, Sample 2 in blue
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These processes are constructed as described in Section 7 for a choice of ρ2(t) = −0.9,

ensuring that the data generating processes both exhibit a point-wise variance of one.

However, the curve fitting procedure fails to conserve this property as high-frequency

changes in the generated sample could be approximately orthogonal to the low-frequency

basis functions contained in a truncated basis. Therefore, curve-fitting artifacts, such as

those shown in Figure 4, can heavily influence the power of the constructed test, meaning

that it could be advisable to change the approach to one of the following.

1. Comparisons at the discrete data points. Suppose observations are discrete

but dense enough to be interpreted as smooth curves. In that case, one could use the

points where data is observed to compare the functions generated for approximating

the CvM test to the original samples. This approach is close to the one described in

Bugni and Horowitz 2021 for the case of discrete observations.

2. Linear Interpolation. Instead, one could use linear interpolation of the original

curves to compare them to the generated curves. This would preserve the functional

nature while not generating the artifacts shown in Figure 4.

The simulations presented in Section 7 use the first approach as it limits the computational

cost of the procedure while staying close to the original paper. The same problem occurs

for the mean-focused test. In this case, linear interpolation between the discrete points is

used to approximate the mean function on the full interval.

6 Test for Persistence Alternatives

One extension of the CvM type test presented in Bugni and Horowitz 2021 is a slight

modification leading to a test for differences in the persistence structure of the data

generating processes. This test is an interesting extension as few existing methods test a

similar null hypothesis.

To give some context: In the literature, there is a considerable number of methods to test

whether two samples share a common mean function. Cox and Lee 2008 propose a method

that compares functions point-wise using a multiple comparison procedure introduced by

Westfall and Young 1993. They show that this approach can be used to approximate a

continuum of comparisons as the grid used to compare points gets finer. Fan and Lin

1998 develop a method based on the adaptive Neyman methodology to compare multiple

samples. Their procedure uses wavelet thresholding techniques developed in the authors’

earlier works. Lee, Cox, and Follen 2015 introduce a method that is also based on the

adaptive Neyman methodology and a functional principal component approach to test

whether two samples share a common mean function.

There are also tests for differences in the covariance functions of processes. Guo, Zhou, and

Zhang 2018 develop a method based on the supremum of the integrated squared difference
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between the sample covariance functions of the individual samples and the pooled sample.

Test decisions are then made using critical values derived via bootstrapping approaches.

Building on their previous work, Guo, Zhou, and Zhang 2019 propose an additional test

that generalizes the idea of the point-wise F-test as described, for example, in Ramsay and

Silverman 2005. In their approach, the authors extend existing ideas such as the Fmax-test

or the quasi-GPF trying to answer the corresponding global hypothesis to compare the

covariance functions of multiple functional populations. However, few tests specifically

address differences in the persistence of processes, including higher cross-moment functions

and the proposed procedure adds to the limited arsenal.

6.1 Null-Hypothesis

Let {Xi(t) | i = 1, . . . , n} and {Yi(t) | i = 1, . . . ,m} again denote the samples under

consideration. Assume that the samples consist of i.i.d. realizations of random functions

X(t) and Y (t). To focus on the persistence properties of the random functions, define the

standardized counterparts to these random functions in the following way.

µX(t) =E [X(t)]

σX(t) =
√
E
[
(X(t)− µX(t))

2] µY (t) =E [Y (t)]

σY (t) =
√

E
[
(Y (t)− µY (t))

2] (42)

Then the standardized random variables can be defined as follows.

X̃(t) =
X(t)− µX(t)

σX(t)
Ỹ (t) =

Y (t)− µY (t)

σY (t)
(43)

Their distribution functions can be defined analogously to Section 5 and shall be denoted

by FX̃(z) and FỸ (z) respectively in the following. Then a modified null hypothesis similar

to Bugni and Horowitz 2021 can be formulated with respect to the distribution functions

of the standardized random variables.

H0 : FX̃(z) = FỸ (z) ∀z ∈ L2[0.1]

H1 : Pµ [FX̃(z) ̸= FỸ (z)] > 0
(44)

As the standardization eliminates all differences in these processes’ mean and variance

patterns, one of the distinct remaining features that might differentiate these processes is

their persistence properties. Somewhat more technical, this hypothesis is linked to the

equality of the cross-moment functions of the underlying processes after standardization.

Therefore, this focused approach could be tailored by choosing an appropriate µ to detect

differences in this general idea of persistence of the data generating processes.
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6.2 Test-Procedure

The modified test is functionally nearly identical to the CvM type test described in Bugni

and Horowitz 2021. However, it adds a standardization step to eliminate differences in the

mean functions of the processes and their variance structure. In each permutation step,

the calculation of the test statistic is thus described by the following algorithm.

Let W = {Wi(t) | i = 1, . . . , n} be sample one and V = {Vi(t) | i = 1, . . . ,m} be

sample two. These samples are generated by randomly permuting the original samples

{Xi(t) | i = 1, . . . , n} and {Yi(t) | i = 1, . . . ,m} across and within sample.

1. Calculate the sample mean functions for the permuted samples:

W̄ (t) = 1
n

∑n
i=1Wi(t) and V̄ (t) = 1

m

∑m
i=1 Vi(t)

2. Center the sample curves to obtain centered permutation samples:

W̄ = {Wi(t)− W̄ (t) | i = 1, . . . , n} and V̄ = {Vi(t)− V̄ (t) | i = 1, . . . ,m}

3. Calculate the point-wise standard deviations:

σW(t) =
√

1
n

∑n
i=1

[
Wi(t)− W̄ (t)

]2
and σV(t) =

√
1
m

∑m
i=1

[
Vi(t)− V̄ (t)

]2
4. Standardize the observations in the permuted samples:

W̃ = {Wi(t)−W̄ (t)
σW (t)

| i = 1, . . . , n} and Ṽ = {Vi(t)−V̄ (t)
σV (t)

| i = 1, . . . ,m}

5. Calculate τ̂n,m for the standardized permutation samples W̃ and Ṽ as described in

Section 5 for a chosen measure µ.

The overarching test procedure is again given by the derivation of a permutation distribu-

tion and a permutation test decision according to the rules stated in Section 4.

Due to the introduction of the standardization step, the problem described in Section

5.9 is potentially of even greater importance than in the previous sections. As the test

relies on standardizing the objects used for calculating the test statistic, it would be of

immense importance whether curve fitting is employed and at what step of the procedure

it is introduced. For example, if standardization were applied to discrete observations,

which are then fitted using a functional basis, the resulting curves would generally not

be standardized in the desired way. This can be seen in Figures 12 and 13 in Appendix

11.8 which show samples that were generated by processes with a point-wise mean of 0

and a point-wise variance of 1 and their fitted counterparts. Using curve-fitting could

create simulations indicating a strong power against persistence alternatives. However,

this power might entirely be based on the artifacts created by the curve fitting procedure.

Therefore, it is advisable to either perform standardization on the fitted curves if curve

fitting is desired or to forgo curve fitting. A second option is to rely on comparisons

between the discrete observations and the curves created for the approximation of the CvM
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type test statistic as described by Bugni and Horowitz 2021 as the variant for discretely

observed data. For the purposes of this thesis, the latter approach will be used. However,

as the package accompanying this thesis provides functions that can be used to perform

the test for samples fitted using a Fourier basis, it would be simple to perform additional

simulations comparing the approaches in future extensions of this line of research.

7 Simulation Study

To learn more about the potential practical applications of this method, it is helpful to

study its properties in a series of simulations. Bugni and Horowitz 2021 study an array

of different setups that give an idea of the performance in a collection of settings, and

this thesis will study similar setups to extend the understanding of the method. The

simulations presented as part of this thesis have been conducted on bonna2. bonna is the

high performance computing cluster provided by the University of Bonn. However, slight

modifications of the provided code suffice to run it on personal computers.

All analyses in this thesis were performed with R3. As a supplement to this thesis, the

two-sample variant of the test taken from Bugni and Horowitz 2021 is implemented in

an R package called PermFDATest. The R package and all code that has been used

to produce the following results are publicly available as part of a GitHub repository4

that complements this thesis. As previously mentioned in Section 5.9, the CvM type

test statistic is calculated by comparing the generated curves at the points where the

corresponding discrete observations of each sample curve lie. However, the package

additionally provides functions that can be used to perform the test on curves that have

been fitted using a Fourier basis. The package makes extensive use of the implementations

by Ramsay, Graves, and Hooker 2021 and Wickham et al. 2019.

7.1 Simulation Setup

The simulations presented in this thesis are inspired by the simulation study from Bugni

and Horowitz 2021 and shine more light on specific settings that offer insight into the

potential benefits and problems of the method. To describe the specific processes used in

the simulation, the following section introduces the notation used in Bugni and Horowitz

2021. Deviating from the original paper, these simulations focus on the two-sample variant

of the test. Additionally, the data are generated on the closed interval [0, 1] and use a

smaller sample size of 20 observations per sample.

2https://www.dice.uni-bonn.de/de/hpc/hpc-a-bonn/infrastruktur
3R Core Team 2022.
4https://github.com/JakobJuergens/Masters Thesis
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Let T = {0, 0.01, 0.02, . . . , 1} be the index set of the discrete points on the unit interval,

then the observations are constructed in the following way.

1. Draw i.i.d. random variables {ξi,s(t) | (i, s) ∈ {1, . . . , 20} × {1, 2}, t ∈ T } from the

standard normal distribution N (0, 1).

2. For all i = 1, . . . , 20 and s = 1, 2, set X̃i,s(0) = ξi,s(0).

3. For all i = 1, . . . , 20, s = 1, 2 and t ∈ T \ {0}, set X̃i,s(t) = ρs(t)X̃i,s(t − 0.01) +

ξi,s(t)
√

1− ρ2s(t) where ρs(t) is a parameter as defined below.

4. For all i = 1, . . . , 20; s = 1, 2 and t ∈ T , set Xi,s(t) = µs(t) + σs(t)X̃i,s(t) where µs(t)

and σs(t) are parameters as defined below.

The resulting random variables {Xi,s(t) | t ∈ T ; i = 1, . . . , 20; s = 1, 2} are normally dis-

tributed with the following properties.

1. E [Xs(t)] = µs(t)

2. Var [Xs(t)] = σ2
s(t)

3. Corr [Xs(t), Xs(t− 0.01)] = ρs(t)

∀t ∈ T with t > 0.01

This thesis focuses on three distinct violations of the null hypothesis described in the

following. For each of the following settings sample 1 is generated by the same process as

a reference point to compare the different settings. Therefore, the parameters for sample 1

are chosen as follows.

1. µ1(t) = 0 ∀t ∈ T

2. σ1(t) = 1 ∀t ∈ T

3. ρ1(t) = 0.5 ∀t ∈ T \ {0}

For the second sample, three violations of the null hypothesis and a benchmark case where

the null hypothesis is correct are generated.

1. Identical Data Generating Processes

The first setting is the benchmark, where both samples are generated using the same

random function. This setting is meant to support the theoretical points arguing

that the permutation tests described in this thesis have the correct size.

2. Mean Shift

The second setting introduces a shifted mean function. Deviating from sample 1,

sample 2 has a mean function that is smaller for points in the center of the unit

interval.

µ2(t) = t(t− 1) t ∈ T

Pure shifts of the mean function are one scenario where Bugni and Horowitz 2021

describe weak power of the CvM type test.
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3. Correlation Shift

The third setting violates the null hypothesis by changing the correlation structure

between neighboring observations. Here, observations are less persistent due to a

lower but still constant choice of the correlation parameter.

ρ2(t) = 0 ∀t = 0.01, . . . , 1

For this specific choice, each observation in sample 2 is a sequence of independent

observations that follow a standard normal distribution.

4. Variance Shift

In the fourth simulation setting, the point-wise variance function is altered in the

following way.

σ2(t) = 1 + 0.5t t ∈ T

Therefore, sample 2 exhibits a higher point-wise variance towards the upper end of

the unit interval.

Figure 5 shows samples generated by these processes. As can be seen, the difference

between the samples is optically quite subdued. Therefore, a high power against these

alternatives is not expected. However, any nontrivial power shown in these settings is a

good indicator of the qualities of the test.
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Figure 5: Samples generated for the four settings.
Sample 1 in red, Sample 2 in blue

Before performing the simulations, there are several parameter choices that have to be

made, as explained in the theoretical description of the test. These parameter choices

have a considerable influence on the properties of the test. Therefore, further simulations

comparing different parameter choices might be useful to inform future usage in applied

settings.
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1. As shown in the mathematical construction of the data, these simulations compare

samples consisting of a smaller number of observations per sample n = 20 and focus

on the two-sample version of the test. Additionally, each observation is constructed

from a lower number of discrete observations (101) than in the original paper.

2. Concerning the choice of the truncation parameter K as shown in Equation 30, the

authors argue that their simulations showed that the power of the test became flat

at about K = 20 and chose K = 25. For the sake of reproducing their results, the

same parameter was used in this thesis.

3. Another parameter that has to be chosen is the number of functions L used in the

approximation of the test statistic τ̂n,m by Monte-Carlo integration as shown in

Equation 25. Bugni and Horowitz 2021 chose L = 4000 and preliminary testing

confirmed that this choice seems reasonable in many settings when combined with

reasonable choices for the construction of the measure µ.

4. For the number of permutations Q used for the approximation of the permutation

distribution of both test statistics, the authors chose a value of Q = 500. This

thesis uses the same parameter. However, absent strong computational limitations,

a higher choice for Q could benefit the properties of the tests.

5. For the construction of the measure µ the weight function w(t) has to be chosen.

This simulation uses the same weight function as in the empirical application in

Bugni and Horowitz 2021 as described in Section 5.5.

6. Deviating from the original authors’ choice, (ρi)i=1,...,K is determined by checking the

sample standard deviation of the corresponding Fourier coefficients in the first sample

obtained by fitting the same basis used in the construction of µ to the observations.

These are then multiplied by a constant factor of 2 to increase variability in the

functions. This higher variability seemed to improve performance in preliminary

tests but should be studied in further simulations.

7. Using the same choice as in the original paper, the simulations use independent

standard normal error terms Uk k = 1, . . . , K for the Fourier coefficients shown in

Equation 32 for the construction of the measure. As the processes under consideration

are Gaussian by construction and thereby have thin tails, this choice should be

reasonable following the authors’ argumentation.

8. For each setting 1000 simulation runs were performed to approximate the power of

the test against the described alternatives. Since some parts of the simulation are

computationally quite intensive, this choice was guided by runtime restrictions and

Bugni and Horowitz 2021 where the authors also chose to perform 1000 runs per

simulation.
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7.2 Results

Taking a look at the results from the simulation study, it is interesting to compare the

empirical rejection probabilities for different types of violations of the null hypothesis.

Test (ατ , αν) Setting 1 Setting 2 Setting 3 Setting 4

Means-Test αν = 0.05 0.058 0.5 0.04709 0.058

CvM-Test ατ = 0.05 0.03775 0.55675 0.63978 0.9585

Combined (0.04, 0.01) 0.04 0.577 0.5977 0.9535

(0.03, 0.02) 0.043 0.587 0.5516 0.942

(0.025, 0.025) 0.045 0.576 0.53148 0.938

(0.02, 0.03) 0.044 0.564 0.51102 0.932

(0.01, 0.04) 0.046 0.558 0.42929 0.896

Table 1: Empirical Rejection Probabilities

Looking first at setting 1, which is a simulation under the null hypothesis, the rejection

probabilities seem compatible with the chosen size of 0.05. However, the size of the

rejection frequency for the CvM test seems slightly low, which could be an artifact caused

by the relatively low number of simulation runs. A more extensive simulation using 10,000

runs for the CvM type test resulted in a rejection frequency of 0.0469 and therefore seems

to confirm this hypothesis. Next, looking at the rejection frequencies of the mean-based

test in settings 3 and 4, the test shows only trivial power. This is expected as the samples

were explicitly generated by processes sharing a common mean function. For setting 2,

which is a mean shift between the processes, the power of both tests is relatively high

considering the low sample size of 20. Especially considering the fact that the authors

mentioned that the power of the CvM type test in pure mean shift settings is somewhat

lacking. However, this can be remedied by the fact that even though the mean shift is

rather subdued visually, it is stronger than the mean shift used in the simulation study of

Bugni and Horowitz 2021. Due to the change in setting 3, picking up the differences in

the persistence structure might be difficult with a measure induced by a random variable

truncated at a low truncation parameter K. However, for a choice of K = 25, the

simulation shows considerable non-trivial power against this alternative. The fact that the

combined tests keep a lot of their power as the level of the CvM test decreases while the

mean-focused test shows no non-trivial power, indicates that even at higher significance

levels, a comparatively high fraction of violations of the null hypothesis can be identified

by the CvM test. In setting 4, the rejection frequencies are extremely high, which in light

of the other three settings, and the visual presentation of exemplary samples in Figure 5

is unsurprising. In this figure, setting 4 showed the clearest difference between sample 1

and sample 2 and the test was able to pick up on it. Similar to setting 3, the rejection

frequencies for the combined tests indicate that the rejection frequency of the CvM type

test remained high even at stricter significance levels.
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7.3 Simulation - Test for Persistence Alternatives

Using simulations akin to setting 3, it is possible to test the proposed test for persistence

alternatives from Section 6. However, due to computational constraints, this simulation

currently cannot follow the real test’s structure and shall instead serve as a heuristic for

the real test’s performance.

Primarily, the simulation differs from the proposed test to reduce computational cost while

staying reasonably accurate in the proposed simulation setting. The standardization step

makes it necessary to perform the comparison between functions that is performed in the

calculation of the CvM test statistic in each permutation step. This massively increases

the computational cost. Therefore, as a heuristic for the real test, these simulations are

performed without a standardization step. However, a data generating process with a

mean function µ(t) = 0 and a point-wise variance function σ(t) = 1 is used. Therefore,

in expectation, sample equivalents will share these characteristics. However, individual

samples may not. Due to this concession to limited computational resources, the following

simulation results could potentially overstate the power of the test against alternatives

as described above. This is caused by potential differences in the sample mean and

point-wise sample variance present in the permuted samples that would have been removed

by standardization. However, in the proposed test structure, the possibility to specifically

test for alternatives in the persistence structure is an advantage.

The results for different correlation parameters are given in the following tables. Again,

the same reference process with ρ1(t) = 0.5 was used to generate the reference sample.

ατ ρ2(t) = −0.9 ρ2(t) = −0.5 ρ2(t) = 0 ρ2(t) = 0.5 ρ2(t) = 0.9

0.05 0.198 0.858 0.640 0.048 0.977

0.01 0.044 0.623 0.393 0.009 0.913

0.001 0.016 0.385 0.197 0.002 0.734

Table 2: Empirical Rejection Probabilities

These results show multiple things. First, as expected, the rejection frequency for the case

ρ2(t) = 0.5 is close to the chosen nominal level. Due to the properties of permutation tests,

this is not a surprise as it holds by construction.

Second, the other cases, which approximate power against specific alternatives, are interest-

ing as they are in part counter-intuitive. In most settings, one would typically assume that

the rejection frequency increases as the parameter that specifies the deviation from the

null hypothesis changes away from its equivalent in the reference sample. However, these

simulations show that the opposite happens for the case of ρ2(t) = −0.9. Even though the

persistence parameter is even further away from 0.5 than for the case of ρ2(t) = −0.5, the

rejection frequency decreases. This could be linked to the measure that is used for the

calculation of the test statistic. As the parameter decreases, the curves are less persistent,
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meaning that Fourier functions of higher frequency would be needed to approximate them.

However, if, due to the truncation, it is not possible to use appropriately high-frequent

functions in the CvM test, the performance might suffer. This is just a first hypothesis

that could be studied in more detail using further simulations with different persistence

parameters and different truncation parameters for the basis used to construct the measure.

Apart from this unexpected behavior for extremely high-frequent alternatives, the results

are as expected, and the test shows considerable non-trivial power against changes in the

persistence structure of the process. This is a promising indicator of the potential of this

extended testing procedure, and further simulations to study its properties in more detail

would be highly interesting due to the test’s unique approach.

8 Application

In order to give an example of the real-world merits of the method, this section will

compare electricity demand data from Adelaide for different days of the week. This data

is provided as part of the fds5 package for R. It consists of half-hourly energy demand in

megawatts and was originally used by Magnano and Boland 2007 and Magnano, Boland,

and R. J. Hyndman 2008. The data set contains electricity demand curves for 3556 days

from 6/7/1997 to 31/3/2007. Some of these curves, specifically a selection observed on

Wednesdays and Saturdays fitted using a Fourier basis consisting of 25 functions, is shown

in Figure 6.
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Figure 6: Electricity Demand in Adelaide

The specific question studied with the method presented in this thesis is whether electricity

demand on working days and weekends can be seen as if they were generated by the same

stochastic process. However, due to information obtained during the data cleaning step

that indicates a violation of the i.i.d. assumption, the observations for the weekend will

be limited to Saturdays.

5Shang and Rob J Hyndman 2018.
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8.1 Data Cleaning and Preprocessing

Before actually applying the test from Bugni and Horowitz 2021, it is important to prepare

the data for the procedure. As the problem does not have the structure that an experiment

as described in Bugni and Horowitz 2021 possesses, some problems must be addressed

before using the procedure. These adjustments are described below, and some details are

substantiated in Appendix 11.7.

8.1.1 Removal of Mondays and Fridays

One potential problem of this procedure is whether observations on different weekdays

or days of the weekend can be seen as independent and identically distributed. While it

seems reasonable to assume that demand may be similar on Saturdays and Sundays, it is

questionable whether the same can be said for working days. One potential problem is the

ramping up and down of industrial production and commercial activity on Mondays and

Fridays. Therefore, these days were excluded from the analysis. Thus the weekend is only

compared to Tuesdays, Wednesdays, and Thursdays.

8.1.2 Holidays

Furthermore, holidays could appear more frequently on specific weekdays than others.

Whereas on weekends, a holiday would not significantly influence the electricity demand

due to the already reduced economic activity, this is different for weekdays. Therefore if

holidays would occur systematically more often on specific days - such as Thursdays in

the case of Germany - this could create problems. Therefore public holidays in Southern

Australia, the Australian federal territory containing Adelaide, were excluded from the

analysis. A list of holidays that were excluded is given in Appendix 11.7. Additionally,

days immediately before and after holidays are excluded for the same reason as Mondays

and Fridays. This procedure of eliminating holidays from the data set removed 299 out of

3556 curves from the data set which was used in further steps of the analysis.

8.1.3 Curve Fitting

To employ methods that are suitable to remove trend and seasonal components from the

data, it is useful to fit a functional basis to the underlying discrete observations. However,

as described in Section 5.9, this can lead to problems if the truncated functional basis

is unable to capture the features of the discrete data. However, in the setting explored

in this application, visual inspection of the resulting curves showed no signs of artifacts

created by the curve fitting process. This makes sense from a theoretical perspective,

as the curves are more persistent than those explored in the simulations and do not

show pronounced high-frequency variations. Therefore, the truncated basis, consisting

of trigonometric functions of lower frequencies, should be able to capture the curves’

properties appropriately.
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This, in turn, makes the removal of trend and seasonal components from the fitted curves

more attractive, as it more closely addresses the functional nature of the underlying

data generating processes. Therefore, for the purposes of this simulation, a Fourier basis

consisting of 25 functions was fitted to the original data to perform the data cleaning step.

8.1.4 Detrending and Deseasoning

A third potential problem of this data set is its functional time series structure. For

example, electricity demand might be systematically higher in the summer months due to

the added energy consumption of air-conditioning units. Therefore, a simple interpretation

of the data as generated by an i.i.d. process might be unsubstantiated and additional

steps have to be made before the procedure can be justified.

Additionally, it might be the case that electricity demand has a trend component that

must be removed before this method can reasonably be applied to this data. To combat

this low-frequency seasonal component due to the seasons and a potential long-term trend,

the following model is used to demean the data as described below. For the estimation

of this model, holidays and days immediately before and after holidays are excluded.

Mondays and Fridays are included and removed from the data set after the estimation for

the creation of the samples used to apply the method described in this thesis.

fdemand =fmean + ftrend(year− 1997) +
12∑
j=2

1[month= j]fmonth,j

+
7∑

k=2

1[day= k]fday,k + frandom

(45)

The model described in Equation 45 is estimated with the usual theory for function-on-scalar

regression, which is described, for example, in Ramsay and Silverman 2005. Specifically,

the implementation from the R package fda6 was used to estimate the coefficient functions.

Then, the following curves are used for further treatment.

f̃ = fmean +
7∑

k=2

1[day= k]f̂day,k + f̂random (46)

As the resulting estimates of a function-on-scalar regression are functional, it is more

convenient to plot the estimates instead of giving the estimated Fourier coefficients. The

estimated coefficient functions for the different weekdays are of particular interest as they

are directly linked to the problem under consideration. In this case, Sunday is the baseline,

and the curves shown in Figure 7 describe the deviation relative to it.

6Ramsay, Graves, and Hooker 2021.
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Figure 7: Estimates for the weekdays (Sunday as baseline)

This diagram already hints at a considerable mean shift between the working days and the

weekend. As these estimates also hint at a substantial difference between Saturdays and

Sundays, treating them as non-identically distributed could be advisable. Therefore, the

application is limited to comparing working days and Saturdays as the regression results

provide clear evidence against the assumption that Saturday and Sunday can be seen as if

the same random variable generated them. Further regression results, including estimates

of the constant and the coefficient functions for different months, are shown in Appendix

11.7.2.

8.2 Test from Bugni and Horowitz 2021

After cleaning the data as described in the previous section, the method from Bugni and

Horowitz 2021 can now be applied to the cleaned data. To illustrate what these cleaned

curves look like, Figure 8 shows randomly chosen curves observed on Wednesdays and

Saturdays that were prepared with the procedure described above.
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Figure 8: Pre-Processed Electricity Demand in Adelaide

As Figure 8 already shows a considerable mean shift that is more extreme than those

shown in the simulation, the test is expected to pick up on these differences. Additionally,

the sample size is considerably bigger in this scenario, with 478 observations and 1404

observations corresponding to Saturdays and working days, respectively.
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As the power of permutation tests is typically quite sensitive to the sample size, this is

another reason to assume strong power against the apparent violation of the null hypothesis.

Using the same decision rules as in the simulation study leads to the following rejection

decisions.

Test (ατ , αν) Rejection of the Null?

Means-Test αν = 0.05 ✓

CvM-Test ατ = 0.05 ✓

Combined (0.04, 0.01) ✓

(0.03, 0.02) ✓

(0.025, 0.025) ✓

(0.02, 0.03) ✓

(0.01, 0.04) ✓

Table 3: Results of the Test from Bugni and Horowitz 2021

As mentioned before, these rejections of the null hypothesis are unsurprising when looking

at the curves generated for the different days in the data cleaning step. There, it was

obvious that the difference in mean alone was stark between workdays and Saturdays.

Therefore, it was expected for the mean-based test to find the violation of the null

hypothesis in this comparatively large sample problem. Due to the large differences in

mean alone, it is also unsurprising that the CvM type test picked up on the violation. This

application can therefore serve more as a real-world proof of concept for the test. In most

real-world scenarios where the test from Bugni and Horowitz 2021 might be applied a

potential violation of the null hypothesis will be less obvious. Especially violations created

by differing persistence structures will typically be difficult to identify. Therefore, applying

this test to more challenging settings would be interesting. Section 9.4 presents a small

selection of settings that might be interesting for further application of the procedures

described in this thesis.

9 Outlook

The results presented in this thesis gives an impression of the possibilities of the method

developed in Bugni and Horowitz 2021. However, there are problems which came up while

writing this thesis that should not go unnamed. Additionally, this outlook presents ideas

for further simulations that could improve the understanding of methods such as CvM

type tests in a functional data setting and presents real-world scenarios that might be

interesting applications for the methods introduced in this thesis.
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9.1 Potential Problems

Implementation

One source of problems that might influence the results of the simulations is the chosen

implementation. As addressed in Section 5.9, seemingly small choices such as whether to

use a functional basis to represent the observations can have a significant impact on the

performance and reliability of the simulation. Additionally, better optimization could lead

to definite improvements in the usability of the method in real-world applications due to

the immense computational costs associated with specific steps of the testing procedure.

Definition of L2[0, 1]

As mentioned multiple times in this thesis, Bugni and Horowitz 2021 use an uncon-

ventional definition of L2[0, 1] that makes some theoretical considerations of the methods

considerably harder. Therefore, questions such as how this convention interacts with the

type of measure that is used in the CvM type test should be studied further.

9.2 Theoretical Extensions

Variants of the Test based on different Norms

In the classical scalar setting, one common alternative to the CvM test is the Kolmogorov-

Smirnov test. Instead of using the squared distance between two objects, it is based on

the supremum norm. It could be used analogously to construct an alternative test statistic

in the functional setting as shown in Equation 47.

τKS
m,n = sup

z∈L2[0,1]

|F̂n(z)− Ĝm(z)| (47)

Similar to the approximation by Monte-Carlo integration in the main case, it would have to

be approximated in an actual implementation. One obvious approach being the following,

where Zi
i.i.d.∼ Z and Z is a random function as described in Section 5.5.

τ̂KS
m,n = max

i=1,...,H

{
|F̂n(Zi)− Ĝm(Zi)|

}
(48)

One property of a test such as this is that it would open up the possibility of identifying

which function z caused the rejection of the null hypothesis. In practice, this approach

might lead to useful information on the difference between the processes that generated

the samples.

τ̃ = Fdistance

(
F̂n(z), Ĝm(z)

)
(49)

Other variants could be constructed in a similar way from other functional distances

between the empirical distribution functions as shown in Equation 49 leading to a plethora

of possible test statistics. It would be interesting to compare them both from a theoretical

perspective and to use simulations to assess their power in different scenarios.
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Extension to Non-separable Processes

As mentioned in Section 5.1, it might be possible to extend the theoretical arguments

in favor of the test to processes that are non-separable. This potential extension would be

crucial in justifying the application of the test to a broader class of processes. However,

some steps in the proofs of Bugni and Horowitz 2021 would have to be approached from a

different angle to allow for these generalizations.

Functional Principal Component Version of the CvM type Test

One potential extension of the method could be to use the functional principal com-

ponents obtained from the samples to construct the measure. This would be interesting

both from a theoretical perspective and in practical applications. One aspect that would

have to be addressed is that the empirical FPCs do not necessarily form a complete basis

of L2[0, 1]. Thus, additional arguments would have to be made to justify the method.

However, as the basis used to construct the measure could be better suited to generate

functions similar to the original samples, the test’s performance might be superior in

real-world applications.

9.3 Possible Further Simulations

Comparing different Functional Bases

A functional basis is used for constructing the measure and potentially for fitting smooth

curves to discrete observations. Even in settings where observations are not fitted, the basis

used to construct the measure heavily influences the test. From a theoretical perspective,

the test is only justified for complete orthonormal bases. It would be interesting to study

its properties in simulations both for additional complete orthonormal bases and bases

that do not have these properties, such as different spline bases.

Comparing choices of w(t) and (ρi)i=1,the...,K

This thesis only presents simulations for one intuitive choice of w(t) and (ρi)i=1,...,K . It

seems reasonable to assume that these parameter choices could have a significant impact on

the performance of the method, and it would therefore be interesting to compare different

choices in a structured framework.

Less restrictive Distributions of Fourier Coefficients

The measures constructed as part of the CvM type test described in this thesis drew their

Fourier coefficients using independently distributed error terms. Even though this leads

to a convenient implementation, using measures induced by random variables generated

using error terms with a more general dependence structure might be beneficial to increase

the power against specific alternatives. It would be interesting to study the influence on

the power of the test in more general settings, both from a theoretical perspective and

using simulations.
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Simulations for Unbalanced Sample Sizes

The simulations in this thesis only deal with settings where both the reference sample

and the second sample contained the same number of curves. Even though there is no

obvious theoretical reason for unbalanced sample sizes to influence the power of the test

meaningfully, it would be interesting to study settings with unbalanced sample sizes in

further simulations.

Comparing Implementations using different orders of Operations

As described in Sections 6.2 and 7.3, the actual implementation could be highly important

for the properties of the proposed test for persistence alternatives. This thesis only provides

two heuristic simulations to compare the performance of the proposed options due to

computational limitations. Thus, further full-scale simulations studying the properties

of the proposed procedure are crucial to investigate its potential merits in a real-world

setting.

9.4 Potential Applications

As explained in Section 8, the chosen setting is suitable for applying the test, but it is

more of a showcase than what this method would be used for in reality. Therefore, it

would be interesting to apply the method and the variant for persistence alternatives to

data that is more fitting. Two examples that could provide interesting applications for

this method are listed in the following.

• Audio-Curves and specifically speech recordings are a typical scenario for functional

data. The tests described in this thesis could be used to compare samples of recordings

of spoken words. One interesting application could be to determine whether a set of

recordings was manipulated when there is an appropriate reference sample that is

known to be authentic. Especially in computer-generated speech imitation, sometimes

known as voice deep-fakes, a test that could reliably distinguish between original

and imitated speech recordings could be highly relevant.

• Movement-Curves, for example, curves describing the movement of a runner’s

legs during a 100m sprint might also be an exciting field for potential applications.

Given a reference sample of movement curves of runners with a specific alteration to

their movement due to, e.g., a sickness, the test might be useful in the context of

medical diagnostics.
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11 Appendix

11.1 Informal Intuition

For potential readers unfamiliar with functional data analysis and permutation testing,

the initial hurdle of reading this thesis without any intuitive understanding might be high.

Therefore, this short informal introduction should serve as a primer that gives an intuitive

idea about the following questions.

1. What setting are we in?

2. What do we want to test?

3. How do we want to test it?

4. Why should I care?

By choice, this section will not be formal and it will not be precise so as not to introduce

too much detail that could hinder an intuitive understanding.

Answering question one is relatively simple. This thesis deals with a statistical problem

where observations are continuously observed curves. But what does that mean intuitively?

One scenario that is easy to imagine is a curve over time for some variable such as speed:

When driving a car at the 24-hour race at Le-Mans, it has a speed at every point in time

during the race - for example, 155.3 km/h at 2 hours, 33 minutes and 7 seconds after the

race has started. Observations in the sense of this thesis are similar to this curve: at every

value of x in some compact interval [a, b] ⊂ R, we observe a value y.

Question two is also simple. We want to test if two samples of curves are similar in a

specific way. As in many statistical problems, we interpret the observations as realizations

of some random variable. The only difference is that these observations are curves. So we

can ask the question of whether the curves in the two samples are dissimilar enough for us

to say confidently that they were not generated by the same random variable. Staying

with the example of Le-Mans, we could have two identical cars with two equally skillful

drivers collect 24-hour speed curves for the next ten years. We do this to determine if

two different types of fuel change the way the cars act on the track. We now have two

samples, each containing 3650 speed curves in this hypothetical scenario. We want to test

statistically whether changing the fuel made any difference.

Question three is more complicated. Therefore, let’s give the correct intuition by answering

a more straightforward question instead. Let us return to the scalar setting for a moment

- each observation is just a real number x ∈ R again. We want to determine whether two

samples are different enough to confidently say: “These samples are too dissimilar to be

generated by the same random variable.” If you have some statistical knowledge, your

first intuition might be to perform a Kolmogoroff-Smirnov, CvM, or Anderson-Durbin test.

However, let us take one step back first and think about a more general idea.
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From an intuitive point of view, if the same random variable generated the two samples,

the effect of randomly switching observations within each sample and across samples on

an appropriately chosen summary statistic should be small. Formalizing this idea leads to

the concept of permutation tests. By randomly permuting the samples and calculating a

chosen test statistic on the permuted samples, one could derive a distribution for the test

statistic that can be used for testing. If the test statistic calculated on the non-permuted

samples is comparatively extreme, this could be an indicator that the samples were not

generated by the same random variable.

Why you should care about this is the most challenging question. I care about it because

it is cool from a mathematical perspective. Nevertheless, if you care about real-life

problems, there are also good reasons to be interested. Economic data is being observed

at increasing frequencies as technology improves. Many problems that were previously

low dimensional due to data constraints or suitable for classical time series methods

are becoming more complex as methodological challenges such as high-dimensionality

and extreme correlation of neighboring observations arise. Functional data analysis is

a comparatively new approach to many of these problems that transform some of these

problems into strengths by acknowledging the functional structure of the underlying

processes. Permutation tests are also comparatively new, at least in our ability to apply

them on a larger scale.

11.2 L2[0, 1] as defined in Bugni and Horowitz 2021

To distinguish between the typical case presented in the previous parts of this thesis, let

L2[0, 1] denote the Hilbert space of square-integrable functions and L∗
2[0, 1] the square-

integrable functions under the the convention from Bugni and Horowitz 2021. Using

L∗
2[0.1] creates some interesting theoretical challenges, as the resulting object is in fact not

a Hilbert space. To understand the theoretical problems that can occur, it is necessary to

first introduce some additional concepts to illustrate the challenges.

Definition 11.1 (Norm and Seminorm)

A function p : V → F on a vector space V over a field F is called a norm if the following

four conditions hold for all v, u ∈ V and λ ∈ F.

1. p(v + u) ≤ p(v) + p(u)

2. p(λv) = |λ|p(v)

3. p(v) ≥ 0

4. p(v) = 0 =⇒ v = 0

If p : V → F fulfills only properties (1) to (3) it is called a seminorm.

In the same way a norm induces a distance on its corresponding normed vectorspace, a

seminorm p induces a so-called pseudometric d. It is given by d(v, u) = p(u− v). In the
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same way a vector space together with a metric induced by a norm is a metric space, a

seminorm together with an associated space leads to the concept of pseudometric spaces.

Definition 11.2 (Pseudometric Space)

A pseudometric space (X, d) is a set X together with a function d : X ×X → R≥0, such

that ∀x, y, z ∈ X the following properties hold.

1. d(x, x) = 0

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Therefore, deviating from a metric space, two distinct points in a pseudometric space can

have a distance of zero d(x, y) = 0 for x ̸= y.

That L∗
2[0, 1] is not a Hilbert space becomes clear, when checking for the properties of the

norm induced by the inner product ∥v∥ =
√

⟨v, v⟩. One of the properties that has to be

fulfilled by a norm is ∥v∥ = 0 ⇐⇒ v = 0. Let f : [0, 1] → R be given by f(x) = 1 [x = 0.5].

Then evaluation of the following expression creates a contradiction to the norm properties.

∥f∥ =
√
⟨f, f⟩ =

√∫ 1

0

[f(t)]2 dt = 0 (50)

As f is not the zero element of this space, this is a violation of positive definiteness.

Positive definiteness applied to the case at hand, states that ∀v ∈ L2[0, 1] ∥v∥ = 0 =⇒
v(x) = 0 ∀x ∈ [0, 1]. Instead, ∥v∥ =

√
⟨v, v⟩ is a seminorm and the defined space should

more correctly be treated as a pseudometric space. In this context, it is useful to consider

the concept of Hausdorff spaces. Richmond 2020 define Hausdorff spaces as follows.

Definition 11.3 (Hausdorff Space)

A topological space is called a Hausdorff space if ∀a ̸= b, there exist a neighborhood Na

of a and a neighborhood Nb of b such that Na ∩ Nb = ∅. This property is also called

neighborhood-separability.

One problem of L∗
2[0, 1] is that the space with the topology induced by the obvious

seminorm would not be Hausdorff. Thus, limits in the later part of Bugni and Horowitz

2021 would not be defined. The second problem is that it is not clear how a Schauder

basis would be defined for a pseudometric space such as L∗
2[0, 1] and that typical existence

results for orthonormal bases might not be available. For example, the Fourier basis is

an almost everywhere basis of L2[0, 1] as shown by Carleson 1966. However, for many

square-integrable functions, point-wise convergence of a weighted sum of basis functions,

as shown in Equation 29, is not fulfilled. This is simple to see for any function that does

not have identical values on both sides of its domain. In more basic terms, this implies

that using the Fourier basis, it is impossible to construct some functions in L∗
2[0, 1] even

using a non-truncated representation as shown in Equation 29.

iii



This, in turn, implies that a probability measure that is constructed as shown in Section

5.5 cannot give positive weight to many functions in the space L∗
2[0, 1]. Namely, for any

function in L2[0, 1] for which the Fourier series fails to converge point-wise, it is impossible

to assign a positive probability. However, as the null hypothesis is formulated with respect

to µ, this does not formally create any problems as these functions are irrelevant in the

formulated null hypothesis. In an application, this should, however, be kept in mind as

the construction of the test might lead to unintuitive behavior in less controlled settings.

11.3 Asymptotic Distribution of the Cramér-von Mises Test

As shown by Rosenblatt 1952 and Fisz 1960, under the null hypothesis that both samples

were independently generated by random variables sharing the same distribution function,

it is possible to derive the following limiting distribution of Cm,n.

Cm,n
d−→
∫ 1

0

(
Z(u) + (1 + λ)−

1
2 f(u)−

[
λ

1 + λ

] 1
2

g(u)

)2

du

as n→ ∞, m→ ∞,
n

m
→ λ ∈ R

(51)

Here, f(u) and g(u) are the probability density functions of the corresponding random

variables and Z(u) is a Gaussian stochastic process with the following properties.

• E [Z(u)] = 0 ∀u ∈ [0, 1]

• Cov (Z(u), Z(v)) = min(u, v)− uv ∀u, v ∈ [0, 1]

11.4 Proof from Hoeffding 1952

Theorem as stated in Lehmann and Romano 2005

Suppose XN has distribution PN in XN , and GN is a finite group of transformations

from XN to XN . Let GN be a random variable that is uniform on GN . Also let G ′
N have

the same distribution as GN , with X
N , GN , and G ′

N mutually independent. Suppose, under

PN , (
TN(GNX

N), TN(G ′
NX

N)
)
→d (T, T

′), (52)

where T and T ′ are independent, each with common cumulative distribution function R(t).

Then, under PN ,

R̂N(t) →P R(t) (53)

for every t which is a continuity point of R(t).

Proof as presented in Lehmann and Romano 2005

Let t be a continuity point of R(t). Then,

EPN

[
R̂N(t)

]
= PN

[
TN(GNX

N) ≤ t
]
→ R(t), (54)
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by the convergence hypothesis shown in Equation 52. It therefore suffices to show that

VarPN

[
R̂N(t)

]
→ 0 or, equivalently, that

EPN

[
R̂2

N(t)
]
→ R2(t). (55)

But,

EPN

[
R̂2

N(t)
]
=

1

M2
N

∑
g∈GN

∑
g′∈GN

PN

[
TN(gX

N) ≤ t ∧ TN(g
′XN) ≤ t

]
= PN

[
TN(GNX

N) ≤ t ∧ TN(G ′
NX

N) ≤ t
]
→ R2(t),

(56)

again by the convergence hypothesis. Hence R̂N(t) → R(t) in PN probability.

11.5 Argument for Finiteness

The following argument can be made concerning the finiteness of the mean.

F̂n(z) ∈ [0, 1] ∧ Ĝm(z) ∈ [0, 1] =⇒
[
F̂n(z)− Ĝm(z)

]2
∈ [0, 1] ∀z ∈ L2[0, 1]∫

L2[0,1]

1 dµ(z) = 1 ∧
∫
L2[0,1]

0 dµ(z) = 0 =⇒
∫
L2[0,1]

[
F̂n(z)− Ĝm(z)

]2
dµ(z) ∈ [0, 1]

(57)

11.6 Multiple Testing

When testing statistical hypotheses, it is often helpful or even necessary to test multiple

hypotheses independently of each other. One setting where this could be useful is when

trying to combine the desirable properties of two tests, as done by Bugni and Horowitz

2021. If the tests do not perfectly depend on each other, this creates a problem relating to

the size of the combined test.

Definition 11.4 (Family-wise Error Rate)

The family-wise error rate is the probability of making at least one type-1 error when

performing multiple hypothesis tests.

The most straightforward correction for this multiple testing problem is the so-called

Bonferroni Correction. Introduced by Dunn 1961, it is based on Boole’s Inequality shown

in Equation 58, which is sometimes referred to as the Bonferroni Inequality.

P

[
∞⋃
i=1

Ai

]
≤

∞∑
i=1

P [Ai] (58)

for a countable set of events A1, A2, . . . . This inequality motivates the idea to construct a

combined test by rejecting the null hypothesis if any individual test indicates a violation

of the null hypothesis. It is then necessary to control the family wise error rate when
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performing multiple tests by choosing the individual tests’ size such that they add up to

the desired overall family-wise error rate. However, as tests might be correlated, this could

lead to an overall test that is conservative. Still, if little information is known about the

correlation structure of the individual test statistics, this idea ensures that the family-wise

error rate is at most the sum of the individual test sizes.

11.7 Application Data Cleaning

11.7.1 Excluded Holidays

Holidays that were excluded in the analysis are the following7: New Year’s Day, Australia

Day, March Public Holiday, Good Friday, Holy Saturday, Easter Monday, Anzac Day,

Queen’s Birthday, Labour Day, Christmas Day, Christmas Eve, Christmas Day, Proclama-

tion Day and New Year’s Eve. Sunday is nominally a public holiday in South Australia.

Easter Sunday is therefore not a special public holiday, but due to its prominence it was

excluded in this analysis.

As Australia replaces some holidays that fall on weekends with substitute holidays on

the next working day, these were also excluded. For South Australia, this can occur for

New Year’s Day, Australia Day, ANZAC Day, Christmas Day, Proclamation Day and New

Year’s Eve.

11.7.2 Detrending and Deseasoning Results

Figures 9 and 10 show the estimates for the coefficient functions as specified in Equation 45.

These curves were subtracted from the respective observations to eliminate the influence

of, for example, the month the data was observed.
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Figure 9: Estimates for the constant and year

7These were taken from https://www.australia.gov.au/public-holidays accessed on 20.05.2022.
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Figure 10: Estimates for the months (January as baseline)

11.8 Additional Figures
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Figure 11: Empirical Distribution Functions for different samples drawn from a Standard Normal
Distribution
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Figure 12: Original Samples for Persistence Test
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Figure 13: Samples for Persistence Test fitted using a Fourier Basis with 25 functions
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