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1 Introduction

Functional Data Analysis (FDA) has its roots in the work of Ulf Grenander and Kari Karhunen and is

gaining traction as researchers from different fields collect data that is functional in nature. Although

classical statistical methods can often process this data, FDA has advantages allowing it to extract

information given by properties such as the smoothness of the underlying process or its derivatives

(cf. Levitin et al. 2007). As Kokoszka and Reimherr 2017 describe, using methods from FDA should

be considered when one variable of a given data set can be seen as smooth curves. Examples of such

curves are the absorption curves of electromagnetic radiation in the Near-infrared (NIR) spectrum by

chemical samples.1

This paper introduces Functional Linear Regression in a scalar-on-function setting. The distinct

feature of this framework is that the regressor is a function, which makes a different approach to

estimation necessary because the problem of estimating an unknown coefficient function is inherently

infinite-dimensional. We introduce two ways of translating this infinite-dimensional problem into a

finite-dimensional problem that can be addressed using theory from multivariate regression: First, a

so-called basis expansion of the coefficient function, and second, Functional Principal Component Re-

gression (FPCR). Both methods depend on a parameter called a truncation parameter for a functional

basis, and this paper focuses on exploring the selection of these parameters using cross-validation.

In Section 2, we introduce the necessary theoretical concepts, describe the estimation procedures, and

address the theoretical importance of the truncation parameter. Section 3 contains a description of our

Monte-Carlo Simulation, which aims to provide information on how to choose an appropriate functional

basis and truncation parameter for the aforementioned methods. The application in Section 4 uses

the insights from theory and simulation to choose an appropriate basis for the estimation of octane

numbers of gasoline samples based on Near-Infrared absorption curves. In Section 5, we describe the

limitations of our approach and give an outlook on possible extensions for this paper.

2 Theory

To introduce scalar-on-function regression, it is necessary to extend some concepts from multivariate

regression to the realm of infinite-dimensional objects, as the statistics derived from infinite-dimensional

random functions cannot be defined on a finite-dimensional space. One integral concept that must

be defined are random functions as a special case of random variables. Paraphrasing a definition

by Bauer 2020, a random variable X : Ω → Ω′ is an A-A′-measurable function, where (Ω,A, P ) is a
probability space and (Ω′,A′) is a measure space. The typical case for a random variable realizing in

R is (Ω′,A′) = (R,B), where B is the canonical σ-algebra on the real numbers. As a first intuition,

it is possible to imagine a similar concept where a random variable does not realize as an element of

the real numbers but as a function in a function space. A formalization of this idea makes some more

in-depth considerations necessary. The following theoretical introduction closely follows chapters 2.3

and 2.4 from Hsing and Eubank 2015 and chapters 4.4 and 4.6 from Kokoszka and Reimherr 2017.

1For more details on Near-Infrared-Spectroscopy, refer to Appendix 6.1.
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2.1 Inner Products and Hilbert Spaces

The first concept we will introduce is the concept of Hilbert spaces. We start from inner product spaces

but restrict our analysis to vector spaces over R for clarity. Let V be a vector space over R. Then,

a function ⟨·, ·⟩ : V× V → R is called an inner product, if ∀v, v1, v2 ∈ V and a1, a2 ∈ R the following

properties hold.

1. ⟨v, v⟩ ≥ 0

2. ⟨v, v⟩ = 0 if v = 0

3. ⟨a1v1 + a2v2, v⟩ = a1⟨v1, v⟩+ a2⟨v2, v⟩

4. ⟨v1, v2⟩ = ⟨v2, v1⟩

A vector space with an associated inner product is called an inner product space. The inner product

defines a norm and an associated distance on the vector space.

||v|| = ⟨v, v⟩
1
2 and d(v1, v2) = ⟨v2 − v1, v2 − v1⟩

1
2 (1)

If the inner product space is complete with respect to the induced distance, it is called a Hilbert space,

denoted H in the following. To extend the known concept of a basis in a finite dimensional space to

potentially infinite Hilbert spaces, it is necessary to define the closed span of a sequence of elements of

H. Recall that the span of a set of vectors S ⊆ RP is given by

span(S) =

{
k∑

i=1

λivi

∣∣∣∣ k ∈ N, vi ∈ S, λi ∈ R

}
(2)

The closed span span(S) of a sequence S in H is defined as the closure of the span with respect to the

distance induced by the norm and S is called a basis of H if span(S) = H. It is called an orthonormal

basis if, in addition, the following properties hold.

1. ⟨vi, vj⟩ = 0 ∀vi, vj ∈ S for i ̸= j 2. ||v|| = 1 ∀v ∈ S

Each element of a Hilbert space can be expressed in terms of a corresponding basis. Using a Fourier

expansion of an element x ∈ H with respect to a basis S = {sn} leads to the following representation.

x =
∞∑
j=1

⟨x, sj⟩sj (3)

Differing from the finite-dimensional case, these representations can be limits of series. As using an

infinite number of basis functions is infeasible in applied contexts, an intuitive way to approximate

elements in a Hilbert space is to use a truncated series.

x ≈
K∑
j=1

⟨x, sj⟩sj (4)

2.2 Random Functions in the Hilbert Space of Square-Integrable Functions

In functional data analysis, one Hilbert space of particular importance is the space of square-integrable

functions on [0, 1], but analogous constructions can be made for different domains. Denoted by L2[0, 1],

this space consists of all Lebesgue-measurable functions f(t) on [0, 1] that fulfill the following condition.

||f ||2 =
∫ 1

0
|f |2dµ <∞ (5)
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This ensures that a random function has a finite second moment so that the variance and covariance

functions can be defined. The inner product on L2[0, 1] is defined by Equation 6.

⟨f1, f2⟩ =
∫ 1

0
f1f2dµ. (6)

A random function on L2[0, 1] can now be defined formally as a function X : Ω → L2[0, 1] defined on a

probability space (Ω,A, P ) where Ω is a sample space with σ-algebra A and a probability space P .

2.3 Functional Data Sets

If we take a random function X(ω) as defined in the previous section, then its realizations x(t) are

called sample curves of the random function. This presence of functional observations xi(t) in a data

set defines functional data sets. However, realizations of random functions are not typically observed in

their functional form. Instead, each curve is observed at a set of discrete measurement points. Consider

the case of a data set containing observations xi(t) of a random function X(ω)

xi(ti,j) ∈ R, i = 1, . . . , N, j = 1, . . . , Ji, ti,j ∈ [T1, T2] (7)

Each curve xi(t) exists ∀t ∈ [T1, T2], but is only observed at measurement points ti,j . These measurement

points can be different for each sample curve. In this paper, we only consider the case where curves

share their measuring points. To use the unique capabilities of functional data analysis with functional

data obtained in this form, it is necessary to restore its functional structure. Therefore, we introduce

methods such as basis representations in the following parts of the Theory Section.

As in the finite-dimensional setting, the concept of independent and identically distributed (i.i.d.)

data is important for many aspects of functional data analysis. One example of i.i.d. curves could

be Near-Infrared absorption spectra of gasoline samples where each sample is produced by the same

production process and can therefore be interpreted as a realization of and i.i.d. random process itself.

More information about this example can be found in Appendix 6.1.

2.4 Representing a Function in terms of a Basis

As previously described, a basis of a Hilbert space can be used to express its elements using a Fourier

expansion. Let {ϕi(t) | i ∈ I} be a basis used to express a realization x(t) of X(ω). The following

equation shows how to use a basis to express a function as a weighted sum of its elements.

x(t) =
∑
j∈I

ajϕj(t) (8)

One important question in this context is how the coefficients aj for j ∈ I are derived for a given

function x(t). In this paper, this process will remain a black box, but detailed information on the

derivation of these coefficients can be found in chapter 4 of Ramsay and Silverman 2005. Three

examples of bases used to approximate elements of L2[0, 1] in practice and in the later parts of this

paper are explained in the following. Diagrams showing these bases are found in Appendix 6.2.
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Monomial Basis A straightforward idea to approximate functions in L2[0, 1] is to take inspiration

from the well-known Taylor expansion and to use the monomials as a basis. For entire functions f(t),

such as polynomials, the exponential function, or trigonometric functions, we can express the function

as a potentially infinite but converging sum of weighted monomials.

f(t) =
∞∑
i=1

ait
i where ai =

f (i)(0)

i!
(9)

The monomials are only a basis for the space of entire functions and not for L2[0, 1]. However, even

for functions that do not fall into this category, using a truncated Taylor expansion around a chosen

point can lead to reasonable approximations around this specific point or even on R as a whole. As in

the case of the Taylor expansion, it is not necessary to approximate a function around zero, as shown

above. Instead, one can introduce a shift parameter α. This leads to the following formalization of the

Monomial basis.

ϕMi (t) = (t− α)i i ∈ N (10)

Due to the implementation of our simulation, we limit our paper to the case of α = 0. A different

choice of α could lead to performance improvements. As the monomials are not pairwise orthogonal,

this basis is prone to collinearity problems, which can result in numerically unstable estimates. This

restricts the number of basis functions that can be used in the estimation procedures limiting its ability

to capture pronounced local peculiarities. The effects of this problem will be addressed in more detail

in later parts of this paper. The limitation to a low number of monomials can additionally lead to

undesirable behavior away from the point of evaluation (cf. Ramsay and Silverman 2005).

Fourier Basis In the same way the Monomial basis is connected to the Taylor series, the Fourier

basis corresponds to the Fourier series, which can be used to decompose a periodic function into

trigonometric functions. Equation 11 shows an example for a function s(x) with a period of T = 1.

s(x) =
A0

2
+

∞∑
i=1

Ai cos(2πix− ϕi) =
a0
2

+
∞∑
i=1

[ai cos(2πix) + bi sin(2πix)] (11)

Typically, the series is represented in the so-called amplitude-phase form. This, however, is impractical

for the estimation procedures shown in the later parts of this paper due to the phase shift parameter.

Rewriting the series in its sine-cosine form, as shown above, is necessary. The Fourier basis for L2[0, 1]

is thus given by the following sequence of functions defined on [0, 1] directly corresponding to the terms

of the sine-cosine form of the Fourier series.

ϕFi (x) =


1 if i = 1
√
2 cos(πix) if i is even

√
2 sin(π(i− 1)x) otherwise

(12)

To stay true to the original amplitude-phase form, it is reasonable to restrict the number of Fourier

basis functions to odd-numbered values. The Fourier basis’ elements are cyclical which is useful to

expand functions that represent a periodic or seasonal underlying process. Due to the nature of the

trigonometric functions, it is especially suitable to expand functions with a similar curvature across

their domain, resulting in uniformly smooth expansions. (cf. Ramsay and Silverman 2005)
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B-spline Basis Following chapter 3.5 from Ramsay and Silverman 2005, splines are defined by

first dividing an interval of interest [τ0, τB] into B subintervals of non-negative length bounded by

a non-decreasing sequence of points (τb)b=0, ... ,B called knots. On each subinterval, a spline is a

polynomial of order m = n+1 where n is its degree. If there are no multiplicities in the set of knots, the

polynomials on neighboring subintervals share derivatives up to order m− 2 at the boundary knot τb.

A typical case that is often used in practice is an equidistant grid of knots. In some settings, however,

it can be sensible to place multiple knots at the same value to replicate specific properties of the data

structure, allowing for a reduced number of matching derivatives at the corresponding knots. For the

purposes of this paper, we will focus on the case of equidistant knots without multiplicity at inner knots.

B-splines are a specific system of spline functions developed by Boor 1978 and are defined by a recursive

procedure. Let ϕBS
b,m(x) for b ∈ {1, . . . , B +m − 2} be a B-spline of order m for an interval [τ0, τB]

and knots {τb | b = 0, . . . , B}, then it is defined by the Cox-de Boor recursion formula as follows.

ϕBS
b,0 (x) =

1 if x ∈ [τb, τb+1)

0 otherwise

ϕBS
b,m(x) =

x− τb
τb+m − τb

ϕBS
b,m−1(x) +

τb+m+1 − x

τb+m+1 − τb+1
ϕBS
b+1,m−1(x)

(13)

As this equation references knots that are not defined by the original vector of knots, implementations

typically repeat the knots at the boundaries of the interval, τ0 and τB, an additional m times. This

padding of the knot vector allows calculating every object that is needed for the definition of the basis

over the original set of knots.

This does not lead to a basis of L2[0, 1] as the closed span of this finite sequence of functions is not

equal to L2[0, 1]. However, to focus on specific approximation errors in the later parts of this paper,

we will assume that a B-spline basis representation of a function in L2[0, 1] will serve as a sufficient

approximation for an appropriately chosen number of B-spline basis functions. As the B-spline basis

does not have infinitely many elements, it is slightly misleading to speak of truncating the B-spline

basis at a truncation parameter L. For the sake of keeping the notation concise, we will still keep this

notation. By convention, truncating a B-spline basis at truncation parameter L shall mean using a

B-spline basis consisting of L functions from this point on.

2.5 Approximation and Smoothing via Basis Truncation

Realized curves from a data set can be expressed in terms of a chosen functional basis. For this

expansion, it is possible to use a complete basis of L2[0, 1]. In many cases, this is not a desirable

approach as this expansion can introduce high amounts of variance or even lead to the approximation

of noise in the sample curves, the latter being a typical case of overfitting. To combat this problem,

smoothing methods such as acceleration penalties are employed to enforce a degree of smoothness

in the analyzed curves. On the other hand, important information on the curves could be missed by

oversmoothing the data, giving too much weight to a chosen penalty term leading to oversmoothing

and loss of valuable information. This is a typical occurrence of the Bias-Variance tradeoff.
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A usual setup is described by Goldsmith et al. 2011 in which an explicit smoothing term is used to tune

the smoothness of the estimator β̂(t) while setting setting the number of basis functions sufficiently

high. To provide intuition for this approach, let

PSSEλ(α, β) =
N∑
i=1

[
Yi − α−

∫ 1

0
β(t)Xi(t)dt

]2
+ λ

∫
[Dmβ(t)]2 dt (14)

denote the penalized residual sum of squares for the derivative of order m. A typical choice is the

second derivative, as highly variable functions are expected to exhibit large second derivatives and

therefore a larger penalty. The smoothing parameter λ is set to minimize the PSSEλ(α, β), which can

be achieved by different criteria as shown in Lee 2003.

A different approach is to enforce smoothing by limiting the number of basis functions in the approxi-

mation of the functional objects. Here, the parameter of choice is not a weighting term for the penalty

but the number of basis functions. Exploring this alternative smoothing method in two different

estimation procedures is the main focus of this paper. A truncated basis expansion as described above

is given in Equation 15.

X(ω0) = x(t) =
∑
j∈I

aj(ω0)ϕj(t) =

L∑
j=1

aj(ω0)ϕj(t) + δ(t) ≈
L∑

j=1

aj(ω0)ϕj(t) (15)

Here, δ(t) is the truncation error and L ≤ max
j∈I

(j) for all L ∈ I. In later parts, this approximation error

is explicitly denoted in the derivation and then omitted for the final approximations. L can be chosen

subjectively, but also through applying data-driven methods such as Cross-Validation (CV). Figure 1

shows the effect of choosing different numbers of basis functions for one NIR absorption curve from the

gasoline data set, which exemplifies the tradeoffs at the core of the truncation parameter choice.
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Figure 1: B-spline Approximations of NIR Absorption Spectra with different Basis Truncation Parameters
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2.6 Karhunen-Loéve Expansion and Empirical Eigenbases

Given a random function X : Ω 7→ L2[0, 1], it is possible to represent its realizations in terms of the

stochastic process. To do so, we define the mean and covariance functions of X(ω).

µ(t) = E [X(ω)(t)] (16)

c(t, s) = E
[
(X(ω)(t)− µ(t)) (X(ω)(s)− µ(s))

]
(17)

Here, the c : [0, 1]× [0, 1] → R are Hilbert-Schmidt Kernels and K is a corresponding Hilbert-Schmidt

integral operator2 K : ν → Kν for ν ∈ L2[0, 1] defined by the following equation.

[Kν](t) =

∫ 1

0
c(t, s)ν(s)ds (18)

The operator K has orthonormal basis functions νm ∈ L2[0, 1], each corresponding to an Eigenvalue

λm (cf. Alexanderian 2015). Theoretical considerations lead to the result that X(ω) can be represented

in the following form, called its Karhunen-Loéve expansion.3

X(ω)(t) = µ(t) +

∞∑
m=1

ξm(ω)νm(t), ξm(ω) =

∫ 1

0
(X(ω)(s)− µ(s)) νm(s)ds (19)

Here, the νm are defined by the countable set of solutions {(λm, νm) |m ∈ N} of [Kν](t) = λν(t). The

random variables ξm(ω), which are called scores, satisfy the following properties.

1. E [ξm(ω)] = 0

2. Cov (ξm(ω), ξn(ω)) = 0 if m ̸= n

3. V ar (ξm(ω)) = λm

As in the well-known setting of principal component analysis, the Eigenvalues correspond to the

variance in the random function explained by the corresponding Eigenfunction. Therefore, ordering

the Eigenfunctions according to their corresponding Eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 is useful for

approximation purposes. Due to this property, a functional observation can often be approximated

well by using a limited number of the Eigenfunctions of its generating random process. Moreover, our

data generating process for the simulation study is based on this property as explained in Section 3.2.

The concept of principal components, which can be extended to the functional setting.

Let {x1(t), . . . , xn(t)} be a set of i.i.d. realizations generated by a random function X(ω). Define the

following sample analogs for the mean and covariance functions.

µ̂(t) =
1

N

N∑
i=1

xi(t) (20)

ĉ(t, s) =
1

N

N∑
i=1

(xi(t)− µ̂(t)) (xi(s)− µ̂(s)) (21)

2Definitions of Hilbert-Schmidt Kernel and Integral Operator are provided in Appendix 7.1.
3Proofs for these theorems are provided in Appendix 7.2 and 7.3.
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With these it is possible to derive a set of sample analogs {(λ̂m, ν̂m) |m = 1, . . . ,O} for {(λm, νm) |m =

1, 2, . . . } as the solutions of the following equation.∫ 1

0
ĉ(t, s)ν̂(s)ds = λ̂ν̂(t) (22)

In the following, we will call the ν̂m(t) Functional Principal Components (FPC’s) to distinguish

the sample analogs from the theoretical Eigenfunctions νm(t). As in the case of ordinary principal

components, the number of FPC’s corresponding to non-zero Eigenvalues is limited (cf. Ramsay

and Silverman 2005). As each curve is infinite-dimensional, there is no upper limit to this number

due to the dimensionality. However, the number of curves still imposes an upper limit of N − 1

non-zero Eigenvalues, where N is the number of curves in the data set. A second upper limit is

given by the number L of basis functions available in the derivation of the FPC’s. Define therefore

O := min(N − 1, L). In case the number of FPC’s is limited by L, an exact representation of the

functional observations is impossible, introducing an approximation error. For the purposes of this

paper, we will not address this error and assume that an exact representation is possible. Using this

assumption, O is implicitly assumed to always equal N − 1.

These sample analogs naturally lead to the following representation of each sample curve xi(t).

xi(t) = µ̂(t) +

O∑
j=1

ξ̂mi ν̂
m(t) (23)

Here, the ξ̂mi are derived as

ξ̂mi (ω) = ⟨xi − µ̂, ν̂m⟩ =
∫ 1

0
(xi(s)− µ̂(s)) ν̂m(s)ds (24)

In reality, these calculations are often implemented using basis representations of both the functional

principal components ν̂m and the observations xi(t) leading to the following representation. For clarity,

we assume that the bases used for the expansion of both the observations and the coefficient function

are proper bases of L2[0, 1] and can therefore be used to express the corresponding objects exactly.

The δJi (s) denotes the approximation error of the demeaned observation due to the basis truncation

and δm,K
ν (s) denotes the corresponding error for the FPC.

ξ̂mi =

∫ 1

0
(xi(s)− µ̂(s))ν̂m(s)ds =

∫ 1

0

∑
j∈I

ai,jϕj(s)

(∑
k∈L

dmk ψk(s)

)
ds

=

∫ 1

0

 J∑
j=1

ai,jϕj(s) + δJi (s)

( K∑
k=1

dmk ψk(s) + δm,K
ν (s)

)
ds

=

J∑
j=1

[
ai,j

K∑
k=1

dmk

∫ 1

0
ϕj(s)ψk(s)ds

]
+

K∑
k=1

dmk

∫ 1

0
δJi (s)ψk(s)ds

+
J∑

j=1

ai,j

∫ 1

0
ϕj(s)δ

m,K
ν (s)ds+

∫ 1

0
δJi (s)δ

m,K
ν (s)ds

(25)

8



In practice, a typical choice is to use the same basis (ϕj(t))j∈I and the same truncation parameter

L for the basis expansion of the demeaned observations (xi(t)− µ̂(t)) and the functional principal

components ν̂m. This leads to the following simplification of Equation 25.

ξ̂mi =
L∑

j=1

[
ai,j

L∑
k=1

dmk

∫ 1

0
ϕj(s)ϕk(s)ds

]
+

L∑
k=1

dmk

∫ 1

0
δLi (s)ϕk(s)ds

+
L∑

j=1

ai,j

∫ 1

0
ϕj(s)δ

m,L
ν (s)ds+

∫ 1

0
δLi (s)δ

m,L
ν (s)ds

(26)

We define the following objects

ξ̃m,L
i :=

L∑
j=1

[
ai,j

L∑
k=1

dmk

∫ 1

0
ϕj(s)ϕk(s)ds

]
δLξ,i := ξ̂mi − ξ̃m,L

i (27)

ν̃m,L(t) :=
L∑

k=1

dmk ϕk(t) δm,L
ν (t) := ν̂m(t)− ν̃m,L(t) (28)

This method of deriving or approximating the Eigenfunctions and scores from a data set is introduced

in chapter 8.4.2 of Ramsay and Silverman 2005 and implemented in the R package fda. The following

considerations and results of the simulation study might provide information about the performance of

this method in a scenario where a limited number of basis functions is provided to the method instead

of using more conventional smoothing approaches.

2.7 Scalar-on-Function Regression

In the simple scalar setting, one of the essential tools in econometrics is linear regression. To motivate

the jump from multivariate regression to scalar-on-function regression, assume a data generating

process as follows.

Y = Xβ + ϵ (29)

Here, Y is the vector of response variables, X is the matrix containing the corresponding regressors

in its columns, and β = (β0, β1, . . . , βp)
′ is the vector containing the unknown coefficients. In this

finite-dimensional setting, one important question is how to estimate the unknown coefficients β. The

most famous estimator, the Ordinary Least Squares estimator, fulfills this purpose.

β̂OLS = (X ′X)−1X ′Y (30)

The concept of linear regression can be extended to the setting of functional data, where a scalar

response variable is assumed to be dependent on a functional regressor. Integrating over the product

of an observation with the coefficient function is not the only functional that can be used to create

a data generating process involving functional observations. However, it is the most typical as it

naturally extends the intuition from multiple linear regression to the realm of infinite-dimensional

objects. Therefore, we will always assume a data generating process as follows in this paper.

Y (ω) = α+

∫ 1

0
β(s)X(ω)(s)ds+ ϵ(ω) (31)
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Similar to the finite-dimensional setting, a challenge is to estimate the unknown coefficient function

β(t) given a data set containing realizations of a random function and associated scalar response

variables. A simple extension of the OLS estimator to allow for infinite-dimensional objects is not

possible. Therefore, other options have to be considered, two of which are explained in the following.

2.7.1 Estimation using Basis-Representation

The most common way to make this problem tractable is via a basis representation of β(t). Let

{ϕj(t) | j ∈ I} be a basis of L2[0, 1] and represent β(t) in terms of this basis.

β(t) =
∑
j∈I

bjϕj(t) (32)

This enables us to write Equation 31 using this representation to obtain a formulation as a sum of

scalar random variables Zj(ω).

Y (ω) = α+

∫ 1

0
β(s)X(ω)(s)ds+ ϵ(ω) = α+

∫ 1

0

∑
j∈I

bjϕj(s)

X(ω)(s)

ds+ ϵ(ω)

= α+
∑
j∈I

[
bj

∫ 1

0
X(ω)(s)ϕj(s)ds

]
+ ϵ(ω) = α+

∑
j∈I

bjZj(ω) + ϵ(ω)

(33)

This representation translates the original problem of regressing a scalar on a continuously observed

function to a problem where a scalar is regressed on what is possibly a countably infinite sequence of

regressors. Using a truncation of the basis at some parameter J can be used to make this problem

tractable if we assume that the approximation error created by this truncation is small.

Y (ω) = α+

∫ 1

0

 J∑
j=1

bjϕj(s) + δJβ (s)

X(ω)(s)

ds+ ϵ(ω)

= α+

J∑
j=1

bj

∫ 1

0
ϕj(s)X(ω)(s)ds+

∫ 1

0
δJβ (s)X(ω)(s)ds+ ϵ(ω)

(34)

In practice, it is common to not only express the coefficient function in terms of a basis but also

the observations. Therefore two bases, (ϕj(t))j∈I and (ψk(t))k∈L, and two corresponding truncation

parameters, J and K, can be chosen. This leads to the following representation.

Y (ω) = α+

∫ 1

0
β(s)X(ω)(s)ds+ ϵ(ω) = α+

∫ 1

0

∑
j∈I

bjϕj(s)

(∑
k∈L

ak(ω)ψk(s)

)ds+ ϵ(ω)

= α+

∫ 1

0

 J∑
j=1

bjϕj(s) + δJβ (s)

( K∑
k=1

ak(ω)ψk(s) + δKX (ω)(s)

)ds+ ϵ(ω)

= α+

J∑
j=1

bj

[
K∑
k=1

ak(ω)

∫ 1

0
ϕj(s)ψk(s)ds

]
+

J∑
j=1

bj

∫ 1

0
ϕj(s)δ

K
X (ω)(s)ds

+
K∑
k=1

ak(ω)

∫ 1

0
δJβ (s)ψk(s)ds+ ϵ(ω) +

∫ 1

0
δJβ (s)δ

K
X (ω)(s)ds

(35)
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A typical choice in this scenario is to use the same functional basis (ϕj(t))j∈I and the same truncation

parameter L for both the coefficient function and the approximation of the observations. Using the

following notation

Z̃j(ω) =
L∑

k=1

[
ak(ω)

∫ 1

0
ϕj(s)ϕk(s)ds

]
j = 1, . . . , L (36)

this leads to a considerable simplification of Equation 35 and an approximation by omitting the terms

containing truncation errors.

Y (ω) = α+
L∑

j=1

bjZ̃j(ω) +
L∑

j=1

bj

∫ 1

0
ϕj(s)δ

L
X(ω)(s)ds

+
L∑

k=1

ak

∫ 1

0
δLβ (s)ϕk(s)ds+ ϵ(ω) +

∫ 1

0
δLβ (s)δ

L
X(ω)(s)ds+ ϵ(ω)

≈ α+
J∑

j=1

bjZ̃j(ω) + ϵ(ω)

(37)

A model in the form of Equation 37 naturally lends itself to be estimated using theory from multivariate

linear regression. Define therefore the following objects.

Y =


y1
...

yn

 , Z =


1 Z̃1,1 . . . Z̃1,J

...
...

. . .
...

1 Z̃N,1 . . . Z̃N,J

 (38)

Then an OLS estimator can be calculated in the usual way to obtain an estimate for the values of α

and bj , and an estimate of the coefficient function can be derived accordingly.

bL =
(
Z ′Z

)−1
Z ′Y ∈ RL+1 α̂ = bL1 β̂L(t) =

J∑
j=1

bLj+1ϕj(t) (39)

The performance of this estimation procedure depends in part on the quality of the approximation

in Equation 37. Due to the nature of basis representations, the overall approximation error δ(t) can

only decrease with the number of basis functions. However, in specific points t0 which might coincide

with high predictive power for the response, the error δ(t0) could increase, potentially increasing

the prediction error. In addition, we have the potential benefits of smoothing such as reducing the

potential of overfitting functional noise and reducing the degrees of freedom in the estimation. Because

of this tradeoff between a reduction in the overall approximation error and beneficial smoothing

properties, increasing the number of basis function and thereby decreasing the approximation error is

not necessarily beneficial for the prediction accuracy. Therefore, the behavior of the estimator when

changing the truncation parameter L is not intuitively clear even if we stay in the same basis system.
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2.7.2 Estimation using Functional Principal Components

Using the Karhunen-Loéve Expansion to represent X(ω), it is also possible to express the data

generating process in terms of the Eigenfunctions of X(ω).

Y (ω) = α+

∫ 1

0
X(ω)(s)β(s)ds+ ϵ(ω) = α+

∫ 1

0

(
µ(s) +

∞∑
m=1

ξm(ω)νm(s)

)
β(s)ds+ ϵ(ω)

= α+

∫ 1

0
µ(s)β(s)ds+

∞∑
m=1

ξm(ω)

∫ 1

0
νm(s)β(s)ds+ ϵ(ω) = ᾱ+

∞∑
m=1

ξm(ω)βm + ϵ(ω)

(40)

As these theoretical Eigenfunctions and Eigenvalues are unknown, the corresponding equation in sample

analogs is more interesting as a representation of an observation.

yi = α+

∫ 1

0
xi(s)β(s)ds+ ϵi = α+

∫ 1

0

(
µ̂(s) +

O∑
m=1

ξ̂mi ν̂
m(s)

)
β(s)ds+ ϵi

= α+

∫ 1

0
µ̂(s)β(s)ds+

O∑
m=1

ξ̂mi

∫ 1

0
ν̂m(s)β(s)ds+ ϵi = ᾱ+

O∑
m=1

ξ̂mi β̂
m + ϵi

(41)

This is a simplification as in most implementations, the coefficient function and the principal components

are also expressed or derived in terms of a basis. Introducing both concepts one step at a time leads to

the following complication if we first introduce an expansion of the coefficient function.

yi = α+

∫ 1

0
xi(s)β(s)ds+ ϵi = α+

∫ 1

0

(
µ̂(s) +

O∑
m=1

ξ̂mi ν̂
m(s)

)∑
j∈I

bjϕj(s)

ds+ ϵi

= α+

∫ 1

0

∑
j∈I

bjϕj(s)µ̂(s) +
O∑

m=1

ξ̂mi ∑
j∈I

bj ν̂
m(s)ϕj(s)

ds+ ϵi

= α+
∑
j∈I

bj

∫ 1

0
ϕj(s)µ̂(s)ds+

O∑
m=1

ξ̂mi ∑
j∈I

bj

∫ 1

0
ν̂m(s)ϕj(s)ds

+ ϵi

(42)

Truncating the basis used for expansion of the coefficient function introduces an approximation error.

yi = α+

∫ 1

0

(
µ̂(s) +

O∑
m=1

ξ̂mi ν̂
m(s)

) J∑
j=1

bjϕj(s) + δJβ (s)

ds+ ϵi

= α+
J∑

j=1

bj

∫ 1

0
ϕj(s)µ̂(s)ds+

∫ 1

0
δJβ (s)µ̂(s)ds+

O∑
m=1

ξ̂mi J∑
j=1

bj

∫ 1

0
ν̂m(s)ϕj(s)ds


+

O∑
m=1

[
ξ̂mi

∫ 1

0
ν̂m(s)δJβ (s)ds

]
+ ϵi

(43)

If we additionally derive and approximate the principal components and corresponding scores using a

truncated basis representation as in Equation 26, we obtain the following. To not complicate things

unnecessarily, the following equation assumes that the same basis (ϕj(t))j∈I was used in the derivation

of the principal components and the expansion of the coefficient function. Additionally, the following

approximation truncates the basis for the expansion of the coefficient function at the same parameter

L that was used for the approximation of the principal components and scores.
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Defining the following notation

α̃L = α+

L∑
j=1

bj

∫ 1

0
ϕj(s)µ̂(s)ds+

∫ 1

0
δLβ (s)µ̂(s)ds (44)

we can express Equation 43 as follows.

yi = α̃L +

O∑
m=1

(ξ̃m,L
i + δm,L

ξ,i

) L∑
j=1

bj

∫ 1

0

(
ν̃m,L(s) + δm,L

ν (s)
)
ϕj(s)ds

+ ϵi

= α̃L +

O∑
m=1

ξ̃m,L
i

L∑
j=1

bj

∫ 1

0
ν̃m,L(s)ϕj(s)ds

+

O∑
m=1

ξ̃m,L
i

L∑
j=1

bj

∫ 1

0
δm,L
ν (s)ϕj(s)ds


+

O∑
m=1

δm,L
ξ,i

L∑
j=1

bj

∫ 1

0
ν̃m,L(s)ϕj(s)ds

+
O∑

m=1

δm,L
ξ,i

L∑
j=1

bj

∫ 1

0
δm,L
ν (s)ϕj(s)ds

+ ϵi

≈ α̃L +
O∑

m=1

ξ̃m,L
i

L∑
j=1

bj

∫ 1

0
ν̃m,L(s)ϕj(s)ds

+ ϵi

(45)

The parameter M ∈ {1, . . . ,O} corresponds to the chosen number of principal components and

constitutes another choice in the approximation. Using M functional principal components leads to

the following approximation.

yi ≈ α̃L +

M∑
m=1

ξ̃m,L
i

L∑
j=1

bj

∫ 1

0
ν̃m,L(s)ϕj(s)ds

+ ϵi = α̃L +

M∑
m=1

ξ̃m,L
i b̄m,L + ϵi (46)

As in the previous section, this equation lends itself for estimation with OLS and we can define the

following objects.

Y =


y1
...

yn

 , Z =


1 ξ̃1,L1 . . . ξ̃M,L

1
...

...
. . .

...

1 ξ̃1,LN . . . ξ̃M,L
N

 (47)

We can then derive the following estimator for α̃L and b̄m,L m = 1, . . . ,M

b̃L,M =
(
Z ′Z

)−1
Z ′Y ∈ RM+1 ˆ̃α = b̃L,M1 β̂(t) =

M∑
m=1

b̃L,Mm+1ν̃
m,L(t) (48)

As in the previous case, the performance of this estimation depends in parts on the quality of the

approximations in the derivation of this estimator. The interactions are even more complex. Even

though the approximations exhibit smaller errors when a larger number of basis functions is used, the

interplay of the chosen way of smoothing in the construction of the FPC’s and the choice of a number

of FPC’s used in the linear regression makes the behavior of this estimator difficult to predict.
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3 Simulation Study

3.1 Motivation

Instead of generating data from scratch, we use the gasoline data set from R package refund, which

consists of 60 samples of Near-infrared absorption curves measured in increments of 2 nm from 900 to

1,700 nm, and a response variable, the octane number. We chose this setup to improve the approach

towards the application in which we predict the octane numbers from the gasoline data set. We

introduced different bases in Section 2.4 and demonstrated the importance of the truncation parameter

L for the estimation in Section 2.7. For the simulation study, we use Basis Expansion Regression and

Functional Principal Component Regression (FPCR) with the introduced bases and focus on choosing

the truncation parameter L as well as the number of FPC’s by ten-fold CV using the Mean-Squared

Prediction Error (MSPE).

In practice, the number of FPC’s is often chosen by using the lowest number that explains a specified

proportion of variance of the smoothed curves (cf. Kokoszka and Reimherr 2017). This might not be

optimal since FPC’s with smaller Eigenvalues may have a more significant influence on the prediction

(cf. Jolliffe 1982). In this simulation certain Eigenfunctions could correspond to certain chemical

compounds and vibration overtones in the absorption bands of the spectrum that could have high

predictive power, but explain only little variability in the NIR curves shown in Appendix 6.1.

3.2 Generating Similar Curves

To avoid small sample problems, we generated 200 similar curves denoted by NIRsim, from the

absorption curves of the gasoline data set denoted NIRorig. Our approach is motivated by Karhunen-

Loéve Expansion. First, the initial curves are mapped to the interval [0, 1] as described in Section 2.2 and

expressed in terms of a cubic B-spline basis which is created using 50 knots. In the implementation of the

fda package, these 50 knots account for 52 basis functions (50+4−2). These smoothed curves are centered

before applying the Karhunen-Loéve Expansion. For the purposes of data generation, we assume that

the scores follow a multivariate normal distribution ξ̊ =
(
ξ̊1, . . . , ξ̊M

)′
∼ N (0M , diag(λ̂

1, . . . , λ̂M )).

Finally, we obtain the generated curves NIRsim as realizations of

X̊(ω)(t) = µ̂(t) +
M∑

m=1

ξ̊m(ω)ν̃m,L(t) (49)

where X̊(ω)(t), µ̂(t) and ν̃m,L(t) are approximated as vectors in R401 for M = 30 FPC’s.

3.3 Simulation setup

The simulation study follows Reiss and Ogden 2007 as a guideline. Two different true coefficient

functions, f1(t) and f2(t), that differ in their smoothness, are created to compare our methods with

differing true coefficient functions.

f1(t) = 401 [2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt)] (50)
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f2(t) = 401

[
1.5 exp

(
−0.5(t− 0.3)2

0.022

)
− 4 exp

(
−0.5(t− 0.45)2

0.0152

)

+ 8 exp

(
−0.5(t− 0.6)2

0.022

)
− exp

(
−0.5(t− 0.8)2

0.032

)] (51)

The function f2(t) was generated referring to Cardot 2002 while function f1(t) directly follows Reiss

and Ogden 2007.
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Figure 2: f1(t), smooth function
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Figure 3: f2(t), bumpy function

We created two different error-terms by generating an i.i.d. standard normal error term Z ∼ N (0, 1)

and multiplying it by two error variations σe. The error variations represent different signal-to-noise

ratios of the responses to test the methods with low and high amounts of noise in the responses. They

are created such that the squared multiple correlation coefficient R2 = var(⟨X, f⟩)/(var(⟨X, f⟩) + σ2e)

is equal to 0.9 and 0.6. The two error terms are then used to generate two sets of responses for

f ∈ {f1(t), f2(t)}.

Y1,f = ⟨NIRsim, f⟩+ Z

[
var(⟨NIRorig, f⟩)

0.9
− var(⟨NIRorig, f⟩)

]
Y2,f = ⟨NIRsim, f⟩+ Z

[
var(⟨NIRorig, f⟩)

0.6
− var(⟨NIRorig, f⟩)

] (52)

In total, we created four combinations, using the two coefficient functions and the two error terms.

These four combinations are then used with a different number of Monomial basis functions, cubic

B-spline basis functions and Fourier basis functions to predict the generated responses using the basis

expansion approach and the FPCR approach.

To obtain valid out of sample properties for the FPCR, within each of the ten ten-fold cross-validation

splits, we calculated the first nFPC ∈ {2, 3, 4} FPC’s for the training set T , which was smoothed with

the respective basis specification. The approximated Eigenfunctions ν̃m,L,T are then used to estimate

the scores of the holdout set H, ξ̌m,L,H
i , by Equation 53.

ξ̌m,H,L
i =

∫ 1

0

 L∑
j=1

aHi,jϕj(s)

( L∑
k=1

dm,L,T
k ϕk(s)

)
ds =

L∑
j=1

[
aHi,j

L∑
k=1

dm,T
k

∫ 1

0
ϕj(s)ϕk(s)ds

]
(53)
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Here we use the following basis expansions.

XH
i (t)− µ̂T (t) =

∑
j∈I

aHi,jϕj(t) =

L∑
j=1

aHi,jϕj(t) + δL,Hi (t) ≈
L∑

j=1

aHi,jϕj(t)

ν̃m,L,T =
L∑

k=1

dm,L,T
k ϕk(s)

(54)

In total, we conducted 5000 repetitions for each specified model, basis system and basis function.

The models are denoted as a combination of the function f ∈ {f1(t), f2(t)} and created responses

Y ∈ {Y1, Y2}.

3.4 Results

The discussed results and figures of β̂(t) for the simulation can be found in Appendix 6.3 and 6.5.

3.4.1 Basis Expansion Regression

These results follow from the model introduced in Section 2.7.1, in which we transform the smoothed

curves to perform scalar-on-function regression. Examining the results, it appears that the cross-

validated MSPE exhibits a convex behavior in the number of basis functions for all bases.

Monomial Basis Due to the increasing collinearity problems for higher numbers of Monomial basis

functions, simulations were conducted up until the sixth monomial, which already shows signs of

numerical instability. For reasons outlined in Section 2.4, they seem suited for f1, where it shows

a better performance than B-splines. A hypothesis for this could be that f1 is an entire function,

which can be well approximated with a power series. In the case of f2, this basis shows the weakest

performance out of all bases, for which Figures 11 and 12 provide visual evidence. It seems like β̂(t) is

not changing in the amount of noise and shows exaggerated behavior at the boundaries. This weakness

is especially pronounced in the MSPE for f2, Y1. For f1, the simulation selects 5(3) and for f2 5(5)

Monomial basis functions for the high (low) signal-to-noise ratio.

B-spline Basis Simulations with B-spline basis functions were possible from 4 to 18 basis functions.

From 18 onward, the simulations ran into problems of numerical instability. This might be caused by the

fact, that the B-splines are not pairwise orthogonal. Function f1 chooses 5(4) B-spline basis functions

for the high (low) signal-to-noise ratio to obtain the best fit and shows the worst performance of the

three bases. An explanation might be its extreme behavior at the boundaries and the exaggeration of

the peculiarities of f1 (Figures 9 and 10). This is especially pronounced for the lower signal-to-noise

ratio. For f2, 11(6) B-spline basis functions are chosen for the high (low) signal-to-noise ratio. The

B-spline basis outperforms the Monomial basis in f2 but comes second to the Fourier basis. While

the basis seems to recognize the peculiarities in f2, Y1, it struggles for the noisy responses in f2, Y2

(Figures 11 and 12). With the low signal-to-noise ratio in the responses, the simulation chooses a

smaller number of basis functions, which could prevent overfitting the scalar noise using β̂(t).

Fourier Basis For f1, the simulation chooses a smaller number of Fourier basis functions, 5(3) and a

higher number for f2, 9(7) for the setup with the high (low) signal-to-noise ratio. As for the B-splines

basis, the simulation chooses a smaller number of basis functions for the noisy responses and a higher

number for the high signal-to-noise responses. The Fourier basis performs the best for each setup for
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the Basis Expansion Regression. Several reasons could contribute to this. First, especially f1 shows

similar curvature across the domain while the curvature of f2 does at least not display any erratic

jumps. Second, both functions feature periodic behavior. Third, f2 does have the same value at the

start- and the end of the interval, lending itself to a periodic representation.

3.4.2 Functional Principal Component Regression

The model used for the FPCR is described in Section 2.7.2. The selection of the truncation parameter

L is difficult since the approximated Eigenfunctions from the decomposition are influenced by the

choice of L. In addition, the choice of the number of FPC’s adds to the complexity of the model. Some

eigenfunctions, which might contain important information, could correspond to small Eigenvalues

and, therefore, be omitted as described in Section 3.1. But since the FPCR is ultimately estimated

with a linear model containing the corresponding scores as regressors, the relevant degrees of freedom

in the estimation of the ultimate model are not affected by L, but only by nFPC ∈ {2, 3, 4}. It seems

that neither a convex behavior of the MSPE nor any clear relationship can be observed between the

number of basis functions and the number of FPC’s. This might be because this dependency is too

complex to draw conclusions with this simulation study. Therefore, we will limit ourselves to a brief

description. In this simulation, the cross-validated choice of basis functions indicates that the FPCR

might not take the differing signal-to-noise ratios of the responses into account. This is indicated by

the fact that the same number of basis functions is chosen for the different signal-to-noise ratios. A

possible explanation might be that the FPC’s, which affect the relevant degrees of freedom, are solely

calculated from the smoothed curves, not considering the responses.

Monomial Basis For f1, Y1, the cross-validated MSPE seems to decrease in the number of FPC’s

and chosen basis functions for both the high and the low signal-to-noise ratio (4, 5, 6 basis functions for

nFPC = 2, 3, 4). For the noisy responses of f1, Y2 we find signs of overfitting for nFPC = 4. In f2, we

also observe a decreasing MSPE in the number of FPC’s, but no clear relationship for the chosen basis

functions. The Monomial basis shows the weakest performance out of all three bases in each setting.

B-spline Basis For f1, Y1, the MSPE suggests that models with a higher number of FPC’s perform

better. While the number of basis functions stays at five for nFPC = 2, 3, it increases to 6 basis

functions for nFPC = 4. In f1, Y2, the cross-validated MSPE is only slightly affected by nFPC , but

lowest for nFPC = 3, indicating the possibility of overfitting for nFPC = 4. Similar to the two setups

with f1, the chosen number of basis functions for f2 is increasing in the number of FPC’s (4, 6, 23 for

nFPC = 2, 3, 4).

Fourier Basis In f1, Y1, the MSPE decreases in nFPC while the results in f1, Y2 might indicate

overfitting for nFPC = 4. Both specifications using f1 select the lowest number of basis functions

possible. This is interesting as the number of FPC’s puts a binding lower bound on the number of

basis functions used in their construction. An exploration of the implications of this fact is out of the

scope of this paper. Both configurations of f2 use 5, 15 and 7 basis functions for nFPC = 2, 3, 4. The

basis shows the lowest MSPE for all four settings.

3.5 Interpretation and Relevance for Application

A possible explanation applicable to the setups performing Basis Expansion Regression might be the

effect of the Bias-Variance tradeoff and the following hypothesis: For f1, only little bias seems to be
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introduced when choosing a small number of basis functions. For f2, a higher number of basis functions

seems appropriate. This could result from the inherent peculiarities of f2 that are more pronounced

with higher L, therefore choosing higher numbers of basis functions since the bias is decreasing faster

than the variance is increasing in the number of basis functions compared to f1. The described convex

behavior of the MSPE might also be partially attributable to the bias-variance tradeoff. This convex

behavior was not observed for the FPCR where no clear relationship between the basis functions and

the number of FPC’s could be found. The MSPE of FPCR seems to be comparatively more stable

when changing the number of basis functions than for Basis Expansion Regression. It seems like the

chosen number of FPC’s is more significant, especially for the two high signal-to-noise ratio settings

which display a higher absolute and relative decrease of MSPE in nFPC .

To examine this relationship further, we conducted additional simulations (Appendix 6.4) for B-spline

basis specifications with a large truncation parameter L ∈ {50, 70} for nFPC ∈ {2, . . . , 7}. We can find

potential signs of overfitting in all setups for L = 70. For L = 50, signs of overfitting can be observed

for the setups with the noisy responses. The additional simulations revealed evidence for a relationship

from nFPC = 3 onwards for all setups. For nFPC ∈ {3, . . . , 7}, the ten-fold cross-validated MSPE is

always lower for 50 than for 70 basis functions. This might be the first sign of an L that is chosen too

large and creates undersmoothing. It seems that once a sufficient number of basis functions is used

to expand the curves, FPCR with B-splines performs better using a lower number of basis functions.

While a higher number of nFPC decreases the MSPE of f1, Y1 and f2, Y1 for L = 50 compared to the

main simulations, this does not hold true for the two setups with noisy responses. This strengthens our

hypothesis of the high importance of nFPC for the high signal-to-noise ratio setup. For nFPC ∈ {2, 3, 4},
the additional B-splines simulations perform worse for these high number of basis functions compared

to the main simulation. This might indicate beneficial attributes of a lower truncation parameter in

settings with a lower number of nFPC .

4 Application

Our application uses the methods and insights from the previous sections to predict the octane numbers

of the gasoline data set. Although the simulation study granted valuable insights into the different

methods in our four different settings, it is not enough to determine the optimal method and choice of

basis for the application since there is too much uncertainty involved. To point out some sources of

uncertainty: First, differing from the simulation setup, we do not know the true coefficient function.

Visual inspection of the estimated coefficient functions shown in Appendix 6.7 fuels the hypothesis

that the real coefficient function might be more similar to f2 than to f1, but the insights from the

two functions are not sufficient to draw any conclusion. Second, we have no information about the

signal-to-noise ratio of the measured octane numbers. Third, to generate similar curves, we made

assumptions about the distribution of ξ̊ that are not applicable in this application where we do not

know their distribution.

Therefore, we rerun all specifications for the gasoline data set and use the results of the simulation

study to improve our understanding of the results. The application is designed analogously to the

simulation study: The 60 spectra of the gasoline data set are used to estimate a coefficient function,

predict the reported octane numbers, and evaluate the results via MSPE using 12 fold CV with 5

elements per fold. In total, we conducted 1000 repetitions for each setting, choosing different fold
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partitions for each run. Over all specifications, the best-performing model is FPCR using 4 FPC’s

built on 7 Fourier basis functions (0.0435), followed by Basis Expansion Regression using 10 B-spline

basis functions (0.04574).

4.1 Interpretation of Results

4.1.1 Basis Expansion Regression

The cross-validated MSPE selects 5 basis functions for the Monomial basis. For B-Splines, the cross-

validation selects 10 basis functions and 9 basis functions for the Fourier basis. Comparing β̂(t) for

the different bases away from the boundaries (Figure 25), the B-spline and Fourier bases show similar

behavior, differing from the Monomial estimate, which might be attributable to the lower number of

basis functions. Especially at the lower boundary, the Monomial basis shows exaggerated behavior.

However, we must exercise caution since from L = 6 onwards, we could not calculate stable results for

the Monomial basis. The MSPE for B-splines (0.04574) and Fourier (0.04808) are similar, while the

Monomial basis (0.24181) shows distinctly worse properties. In contrast to the simulation study, the

B-splines basis outperforms the Fourier basis. Driving factors for this improved performance could be

that, first, we do not assume a periodic coefficient function with the same start- and end value and

second, that the Fourier basis enforces identical start and end values on the curves of NIR. Note that

the reported MSPE for the B-spline and Fourier basis are close to the errors reported in the simulation

study for f2, Y1, which might be caused by the hypothesized similarities between the actual coefficient

function and f2, but also by a similar high signal-to-noise ratio of the octane numbers.

4.1.2 Functional Principal Component Regression

The best performance for all numbers of FPC’s was achieved with the Fourier Basis, as for the FPCR

in the simulation study. In contrast to the simulation study, no evidence of overfitting was found for

the best basis choices in any of the three bases. The MSPE for the optimal specification appears to

be strictly decreasing in the number of FPC’s. As for the simulation study, the interpretation of the

results with respect to the chosen basis is difficult: Referring to the plotted estimates β̂(t) (Figures 26,

27 and 28), it appears to be the case that the higher nFPC is, the more similar the behavior of the

corresponding estimates becomes. Differing from the simulation study, the number of basis functions

steadily increases for the Monomial basis. The behavior for the B-spline basis is similar to the one

reported in the simulation study (basis functions increasing in nFPC).

5 Outlook

Limitations

Insights from Simulation cannot be Extended to More General Functions As described,

the properties of the two used functions f ∈ {f1(t), f2(t)} influence the results. Although the resulting

MSPE and visual inspection provided some evidence to support the hypothesis that the true coefficient

function of the original gasoline data set might be similar to f2, other factors that were not addressed

could have caused this. Therefore, this simulation is not sufficient to base reasonable claims concerning

more general coefficient functions on it.
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Collinearity Problems in Basis Expansion Regression Except for the Fourier basis, the Basis

Expansion Regression was in part limited by the numerical instability of the estimation procedure.

This is mainly due to an increase in collinearity of the derived regressor matrix shown in Definition

38. This problem is inherent to basis systems whose functions are not pairwise orthogonal, such as

the Monomial or B-splines bases, but gets more pronounced the more functions we add to the basis

system and the higher the correlation between those functions. The numeric instability of the inversion

of this matrix makes the estimates unreliable and therefore can make this approach infeasible for

non-orthogonal bases in settings where the characteristics of the data set demand a higher number of

basis functions than is feasible due to the properties of the estimation procedure.

Possible Extensions

Orthogonal Polynomials to Solve Collinearity Problems of Monomial Basis To address

the collinearity problems described earlier, one possible idea would be to use a system of pair-wise

orthogonal polynomials as a basis instead of the Monomial basis. One example is the system of Legendre

polynomials which are orthogonal by construction and have the same closed span as the monomials

(cf. Dattoli, Ricci, and Cesarano 2001). Due to their orthogonality, the problem of collinearity in the

regressor matrix is greatly reduced, which could allow for larger numbers of basis functions in the Basis

Expansion Regression approach. The first eight Legendre polynomials are shown in Appendix 6.2.

Comparison to Penalty Based Smoothing Procedures In contrast to the more typical approach

of using a arbitrary, large number of basis functions and smoothing using a penalty term involving, e.g.

the second derivative, this paper focuses on smoothing by using a smaller number of basis functions.

As the next step to the analysis of this paper, we could compare both methods to see in which settings

different approaches to smoothing perform better and if a possible combination of both approaches

could be advantageous.

Larger Range for the Number of Specifications for FPCR The chosen specifications for the

number of principal components and the number of basis functions used for FPCR might be insufficient

to obtain a complete picture of the performance of this procedure when combined with smoothing

using basis truncation. It would therefore be interesting to focus more attention on this limitation of

this paper in a future extension to explore a broader array of possible specifications which might allow

the derivation of more detailed insights.

Input from Physics It could be exciting to combine the findings of this paper with theoretical

expertise from the field of physics. This could inform the choice of models and be conducive to a

more meaningful interpretation of the estimates. For example, specific parts of the NIR spectrum

could possibly be linked to specific molecules associated with the octane number. This could guide,

for example, the construction of a B-spline basis that focuses on the relevant parts of the spectrum

by using a vector of knots founded by field expertise. Alternatively, it could be used to link specific

principal components to chemical compounds, which would be useful for the model selection and

interesting for the interpretation of estimates.
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6 Appendix

6.1 Near-infrared (NIR) Spectroscopy

NIR spectroscopy is a spectroscopic method that uses the near-infrared region of the electromagnetic

spectrum (From 780 nm to 2500 nm). It measures the absorption and interaction of this spectrum of

radiation with the sample. NIR spectroscopy is not only faster and cheaper than the standard test

procedure – another significant advantage is that it does not need a reagent and thus does not destroy

the sample. It is used for analysis in different sectors and fields, like the agrochemical industry and

healthcare. Its non-invasive nature makes it also an asset for medical applications like the monitoring of

diabetes in which NIR spectroscopy can detect the worsening of the blood glucose metabolic dysfunction

(cf . Li et al. 2020).

In the context of this paper, the gasoline data set which is used for the simulation and the application

is constructed using NIR spectroscopy. According to Gy. Bohács, Z. Ovádi, A. Salgó 1998, NIR

spectroscopy is a feasible method for the analysis of gasoline since most of the absorption that is

observed within the described interval of wavelengths is due to overtones and interactions of the

radiation with chemical combinations (carbon–hydrogen, carbon–carbon, carbon–oxygen, carbonyl

associated groups, aromatic stretching, and deformation vibration of the hydrocarbon molecules).

While this paper focuses on the prediction of the octane number of gasoline, other research focuses on

different properties of gasoline such as the olefin, naphtaenic and aromatic content (Parisi et al. 1990,

as cited in Gy. Bohács, Z. Ovádi, A. Salgó 1998) or the distillation characteristics (Pauls 1985, as

cited in Gy. Bohács, Z. Ovádi, A. Salgó 1998)
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Figure 4: NIR absorption spectra from the Gasoline Data Set and Finder SD (a Near-Infrared-Spectroscope
built by HiperScan GmbH)
(Source: https://www.hiperscan.com/files/apoident/uploads/Bilder/Neue Website/Produkte/FinderSD.jpg)
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6.2 Basis Plots
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Figure 5: Fourier basis functions for i = 1, . . . , 7
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Figure 6: B-spline basis functions of order 4 for 8 equidistant knots on [0, 1]
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Figure 7: Monomial basis functions of degree 0 to 7
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Figure 8: Legendre Polynomials of degree 0 to 7

6.3 Simulation Study Results

The following results were rounded to 5 decimal places.

Table 1: Monomial Basis Expansion Regression

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

7.17723 131.92717 0.89367 2.58395 2

4.17039 129.64259 0.81224 2.51177 3

3.91275 130.11708 0.38079 2.09047 4

3.6385 130.59817 0.09217 1.81343 5

6.01644 201.15535 0.76208 3.39373 6

Table 2: B-Spline Basis Expansion Regression

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

3.91275 130.11708 0.38079 2.09047 4

3.64305 130.61095 0.09512 1.81643 5

3.65426 131.35355 0.07775 1.80913 6

3.67705 132.14205 0.07518 1.8168 7

3.71074 133.36537 0.0581 1.8165 8

3.71921 133.68149 0.0564 1.81931 9

3.74201 134.51217 0.05218 1.82576 10

3.7644 135.29727 0.0519 1.8361 11

3.80109 136.57581 0.05204 1.85315 12

3.83436 137.78407 0.05271 1.86997 13

3.86217 138.73431 0.05307 1.88269 14

3.86856 138.97427 0.0526 1.88482 15

3.88506 139.57419 0.05283 1.89335 16

3.91267 140.5149 0.05322 1.90619 17

3.94813 141.80885 0.05358 1.92312 18
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Table 3: Fourier Basis Expansion Regression

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

3.69752 129.19134 0.69524 2.3944 3

3.6347 130.59282 0.07418 1.79582 5

3.67623 132.08248 0.05147 1.79343 7

3.71885 133.67575 0.05105 1.81291 9

3.76451 135.26219 0.05146 1.83463 11

3.81095 136.90282 0.05197 1.85724 13

3.85674 138.57258 0.05252 1.88021 15

3.90619 140.29178 0.05304 1.90283 17

3.95517 142.05727 0.05365 1.92718 19

Table 4: Monomial FPCR, nharm = 2

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

7.17723 131.92717 0.89367 2.58395 2

5.89626 130.64918 0.81105 2.50111 3

5.807 130.55792 0.77154 2.46164 4

6.07681 130.82169 0.77836 2.4684 5

6.55003 131.28414 0.77506 2.465 6

7.55111 132.26672 0.73771 2.42761 7

11.62846 136.28281 0.74403 2.43402 8

17.29836 141.88633 0.69837 2.38887 9

18.84999 143.43309 0.64904 2.33978 10

18.88329 143.46571 0.69403 2.38461 11

18.99159 143.63082 0.81692 2.50713 12

Table 5: Monomial FPCR, nharm = 3

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

4.17039 129.64259 0.81224 2.51177 3

4.08093 129.55048 0.77174 2.47128 4

4.0038 129.49674 0.75004 2.44986 5

4.17563 129.68591 0.45954 2.1605 6

4.23226 129.74146 0.52512 2.226 7

4.4198 129.91964 0.74368 2.4439 8

4.42156 129.92039 0.69479 2.39518 9

4.4125 129.91256 0.64087 2.34145 10

4.44546 129.94476 0.6792 2.37965 11

11.82311 137.32413 0.74329 2.44296 12
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Table 6: Monomial FPCR, nharm = 4

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

3.91274 130.1171 0.38077 2.09045 4

3.95242 130.16289 0.73944 2.44922 5

3.8366 130.05179 0.27201 1.98372 6

3.96405 130.17512 0.30729 2.01904 7

4.38618 130.61211 0.11108 1.82326 8

4.44028 130.66082 0.13501 1.84706 9

4.4251 130.64453 0.1455 1.85748 10

4.44727 130.66669 0.14012 1.85223 11

7.88834 134.08085 0.17742 1.8879 12

Table 7: B-Spline FPCR, nharm = 2

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

10.93556 135.66335 0.69614 2.38597 4

6.01366 130.75986 0.77796 2.46801 5

6.36762 131.10562 0.79035 2.48029 6

6.76471 131.49507 0.7684 2.45834 7

7.21393 131.93622 0.7958 2.48568 8

7.77885 132.48984 0.75447 2.44437 9

8.48517 133.18046 0.71664 2.40654 10

8.95142 133.63714 0.70481 2.39475 11

9.21314 133.89421 0.71456 2.4045 12

9.29854 133.97794 0.73961 2.42952 13

9.31792 133.99732 0.74046 2.43037 14

9.32858 134.00809 0.74354 2.43344 15

9.27722 133.95811 0.77399 2.46383 16

9.23813 133.91976 0.77175 2.46159 17

9.33983 134.01705 0.76653 2.45632 18

9.24067 133.92097 0.78389 2.47367 19

9.34246 134.01837 0.75304 2.44285 20

9.38735 134.06288 0.76148 2.45127 21

9.35218 134.02839 0.75842 2.44823 22

9.50715 134.17875 0.74067 2.43049 23

9.51344 134.18666 0.7552 2.44502 24

9.52277 134.19463 0.75125 2.44107 25
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Table 8: B-Spline FPCR, nharm = 3

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

4.26915 129.73814 0.65618 2.35517 4

3.99153 129.47951 0.75902 2.45877 5

4.13265 129.64227 0.42504 2.126 6

4.15027 129.66158 0.52603 2.22684 7

4.28266 129.7862 0.71107 2.41134 8

4.30464 129.8084 0.65968 2.36019 9

4.32579 129.82882 0.60062 2.3013 10

4.29797 129.80089 0.65658 2.35703 11

4.32782 129.82922 0.68072 2.38108 12

4.34042 129.84041 0.71583 2.41605 13

4.3526 129.8512 0.72262 2.42279 14

4.3577 129.85642 0.72621 2.42637 15

4.37694 129.87493 0.75746 2.45749 16

4.35973 129.85893 0.75291 2.45296 17

4.37223 129.87141 0.69875 2.39878 18

4.34433 129.84395 0.74346 2.44353 19

4.36545 129.86595 0.67405 2.37412 20

4.36942 129.86886 0.67941 2.37944 21

4.34272 129.843 0.6919 2.39205 22

4.38437 129.88403 0.64702 2.34708 23

4.35012 129.8495 0.68435 2.38446 24

4.36866 129.86795 0.67512 2.37514 25
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Table 9: B-Spline FPCR, nharm = 4

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

3.91274 130.1171 0.38077 2.09045 4

3.97061 130.18108 0.75664 2.46627 5

3.83646 130.05682 0.19244 1.90433 6

3.8814 130.0934 0.3326 2.04419 7

4.2679 130.49905 0.09497 1.8071 8

4.31978 130.54252 0.15828 1.87039 9

4.32413 130.5527 0.10538 1.81745 10

4.31263 130.53896 0.13116 1.84322 11

4.33997 130.56608 0.10762 1.81971 12

4.34107 130.56642 0.11868 1.83076 13

4.35627 130.57893 0.12832 1.84037 14

4.35369 130.57747 0.11173 1.82379 15

4.35313 130.57695 0.11652 1.82861 16

4.3476 130.57119 0.11283 1.82497 17

4.31541 130.54208 0.08832 1.80044 18

4.32121 130.54666 0.10087 1.81304 19

4.2968 130.52361 0.08341 1.79552 20

4.30044 130.52787 0.08785 1.79994 21

4.29859 130.52514 0.08833 1.80045 22

4.28391 130.51071 0.08189 1.79394 23

4.29418 130.52054 0.08928 1.80134 24

4.28911 130.51512 0.0856 1.79766 25

Table 10: Fourier FPCR, nharm = 2

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

5.04859 129.81003 0.78889 2.4789 3

5.08647 129.84459 0.69756 2.38778 5

5.29235 130.04946 0.80393 2.49395 7

5.32414 130.07859 0.80074 2.49072 9

5.34403 130.09777 0.79714 2.48713 11

5.43601 130.18816 0.8141 2.50404 13

5.51333 130.26036 0.78908 2.47902 15

5.70153 130.44275 0.79659 2.48646 17

5.87259 130.6101 0.77783 2.46771 19
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Table 11: Fourier FPCR, nharm = 3

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

3.69752 129.19134 0.69524 2.3944 3

5.06895 130.54881 0.1376 1.83947 5

5.21758 130.69839 0.13994 1.84156 7

5.22636 130.70697 0.12715 1.82896 9

5.27531 130.74943 0.14282 1.84453 11

5.29036 130.76091 0.13007 1.83175 13

5.16722 130.64051 0.10365 1.80524 15

4.98841 130.46747 0.11563 1.81733 17

4.92246 130.40322 0.14766 1.84937 19

Table 12: Fourier FPCR, nharm = 4

f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

3.61833 129.83284 0.07736 1.78876 5

3.66209 129.88835 0.06311 1.77442 7

3.68812 129.91351 0.0717 1.78321 9

4.10715 130.34635 0.08317 1.79518 11

4.17569 130.4147 0.08837 1.80046 13

4.21112 130.44645 0.09965 1.81164 15

4.2129 130.45091 0.08775 1.79975 17

4.21884 130.45501 0.09032 1.80229 19

6.4 Additional Simulation

For each of these specifications, we ran 1000 repetitions of the simulation. The following results were

rounded to 5 decimal places.

Table 13: Additional Runs B-Splines for L ∈ {50, 70}

n FPC f1, Y1 f1, Y2 f2, Y1 f2, Y2 n basis

2 12.01215 136.37917 0.74396 2.45234 50

2 12.63307 136.79449 0.73227 2.43754 70

3 4.98379 130.27154 0.62033 2.33437 50

3 6.70572 131.58072 0.69647 2.40584 70

4 4.33014 130.23059 0.08985 1.81309 50

4 5.81452 131.05453 0.26875 1.9835 70

5 4.07164 130.68035 0.06323 1.79676 50

5 5.083 131.08668 0.22106 1.94707 70

6 3.70117 131.04066 0.06245 1.80571 50

6 5.62771 132.62722 0.23593 1.97606 70

7 3.69911 131.80298 0.05566 1.8068 50

7 5.37466 133.80644 0.27455 2.03417 70
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6.5 Simulation - Coefficient Function Estimates
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Figure 9: Basis Expansion Regression - f1, Y1
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Figure 10: Basis Expansion Regression - f1, Y2
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Figure 11: Basis Expansion Regression - f2, Y1
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Figure 12: Basis Expansion Regression - f2, Y2
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Figure 13: FPC Regression, 2 harmonics - f1, Y1
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Figure 14: FPC Regression, 2 harmonics - f1, Y2
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Figure 15: FPC Regression, 2 harmonics - f2, Y1
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Figure 16: FPC Regression, 2 harmonics - f2, Y2
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Figure 17: FPC Regression, 3 harmonics - f1, Y1
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Figure 18: FPC Regression, 3 harmonics - f1, Y2
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Figure 19: FPC Regression, 3 harmonics - f2, Y1
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Figure 20: FPC Regression, 3 harmonics - f2, Y2
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Figure 21: FPC Regression, 4 harmonics - f1, Y1
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Figure 22: FPC Regression, 4 harmonics - f1, Y2
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Figure 23: FPC Regression, 4 harmonics - f2, Y1
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Figure 24: FPC Regression, 4 harmonics - f2, Y2
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6.6 Application Results

The following results were rounded to 5 decimal places.

Table 14: Application Results Basis Expansion Regression

Monomial B-Spline Fourier n basis fold size n folds

2.29641 2 5 12

2.11258 2.07767 3 5 12

0.73444 0.73444 4 5 12

0.24181 0.2544 0.07430 5 5 12

8.88013 0.08621 6 5 12

0.11177 0.05021 7 5 12

0.05012 8 5 12

0.07465 0.04808 9 5 12

0.04574 10 5 12

0.05629 0.05456 11 5 12

0.05291 12 5 12

0.06083 0.05558 13 5 12

0.06926 14 5 12

0.09058 0.07920 15 5 12

16 5 12

0.06161 17 5 12

18 5 12

0.10976 19 5 12

Table 15: Application Results Monomial FPCR

2 FPC 3 FPC 4 FPC n basis fold size n folds

2.29642 2 5 12

2.17648 2.11259 3 5 12

2.21978 2.17702 0.73432 4 5 12

2.21854 2.23061 2.35328 5 5 12

2.21896 1.98803 0.84386 6 5 12

2.23156 2.07872 0.85358 7 5 12

2.19982 2.25104 0.11363 8 5 12

2.24343 2.21964 0.11476 9 5 12

2.18792 2.11694 0.12084 10 5 12

2.20919 2.15677 0.08986 11 5 12

2.27197 2.21142 0.14176 12 5 12
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Table 16: Application Results B-spline FPCR

2 FPC 3 FPC 4 FPC n basis fold size n folds

2.24364 2.1 0.73432 4 5 12

2.21916 2.21024 2.35745 5 5 12

2.2088 1.92703 0.55305 6 5 12

2.22042 2.10322 1.03165 7 5 12

2.17938 2.24933 0.076 8 5 12

2.20726 2.20003 0.18801 9 5 12

2.23642 2.08957 0.05669 10 5 12

2.23069 2.13131 0.09795 11 5 12

2.22878 2.14135 0.05523 12 5 12

2.1994 2.13177 0.06089 13 5 12

2.20168 2.14603 0.07197 14 5 12

2.20372 2.14908 0.05159 15 5 12

2.16851 2.13255 0.05724 16 5 12

2.17341 2.12780 0.06545 17 5 12

2.18263 2.00428 0.05399 18 5 12

2.15647 2.05871 0.06774 19 5 12

2.19268 1.96472 0.05542 20 5 12

2.17718 1.95345 0.0595 21 5 12

2.1798 1.99118 0.05519 22 5 12

2.1966 1.90692 0.05318 23 5 12

2.1786 1.97124 0.05725 24 5 12

2.18768 1.95758 0.0508 25 5 12

Table 17: Application Results Fourier FPCR

2 FPC 3 FPC 4 FPC n basis fold size n folds

2.13234 2.07788 3 5 12

2.26267 0.21409 0.19585 5 5 12

2.15572 0.06414 0.0435 7 5 12

2.16344 0.05448 0.05256 9 5 12

2.16087 0.06795 0.05276 11 5 12

2.13984 0.05848 0.05154 13 5 12

2.17941 0.14014 0.06486 15 5 12

2.16465 0.28983 0.05143 17 5 12

2.18426 0.43575 0.05255 19 5 12
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6.7 Application - Coefficient Function Estimates
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Figure 25: Basis Expansion Regression
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Figure 26: 2 Functional Principal Components
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Figure 27: 3 Functional Principal Components
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Figure 28: 4 Functional Principal Components

7 Definitions and Proofs

The following proofs are adapted from Alexanderian 2015.

7.1 Definition (Hilbert-Schmidt Integral Operator)

Given a bounded domain A ⊂ Rn, we call a function c : A×A → R a Hilbert-Schmidt kernel if∫
A

∫
A
|c(x, y)|2dxdy <∞ (55)

where c ∈ L2(A×A). Let K be an integral operator on L2(A) such that K : ν → Kν for ν ∈ L2(A),

defined by Equation 56.

[Kν](x) =

∫
A
c(x, y)ν(y)dy (56)

When an integral operator K is linear and bounded, it is called a Hilbert-Schmidt integral operator.

The linearity of the operator K is proved as shown in Equation 57. Additionally, assume that α, β ∈ R
and θ ∈ L2(A).
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[K(αν + βθ)](x) =

∫
A
c(x, y)(αν(y) + βθ(y))dy

=

∫
A
c(x, y)αν(y)dy +

∫
A
c(x, y)βθ(y)dy

=α

∫
A
c(x, y)ν(y)dy + β

∫
A
c(x, y)θ(y)dy

=α[Kν](x) + β[Kθ](x)

(57)

For boundedness of the operator K we need to show the following.

∥Kν∥2L2(A) =

∫
A

∣∣∣∣[Kν](x)∣∣∣∣2dx
=

∫
A

∣∣∣∣∫
A
c(x, y)ν(y)dy

∣∣∣∣2dx
≤
∫
A

(∫
A
|c(x, y)|2dy

)(∫
A
|ν(y)|2dy

)
dx (Cauchy-Schwarz)

=∥c∥L2(A×A)∥ν∥L2 <∞

(58)

7.2 Lemma (Three Traits of Scores)

The random function X(t) realizing in L2[0, 1] is expanded by its Eigenfunctions {νm} as shown in

Equation 19. The coefficients ξm corresponding to Eigenfunctions νm satisfy the following properties:

1. E [ξm(ω)] = 0

2. Cov (ξm(ω), ξn(ω)) = δm,nλm

3. V ar (ξm(ω)) = λm

where δm,n = 0 if m ̸= n, otherwise 1.

Proof. Assume that F (t) is the centered process of X(t), namely, F (t) = X(t) −
∫
ΩX(t)dP (ω). To

obtain the first result, we can show that

E[ξm] =E
[∫ 1

0
F (t)νj(t)dt

]
=

∫
Ω

∫ 1

0
F (t)νm(t)dtdP (ω)

=

∫ 1

0

∫
Ω
F (t)νm(t)dP (ω)dt (Fubini)

=

∫ 1

0

∫
Ω
F (t)dP (ω)νm(t)dt

=

∫ 1

0
E[F (t)]νm(t)dt = 0

(59)

where E[F (t)] is 0 since F (t) is a centered process.
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The second claim is proved as

E[ξmξn] =E
[∫ 1

0
F (s)νm(s)ds

∫ 1

0
F (t)νn(t)dt

]
=E
[∫ 1

0

∫ 1

0
F (s)νm(s)F (t)νn(t)dsdt

]
(Fubini)

=

∫ 1

0

∫ 1

0
E[F (s)F (t)]νm(s)νn(t)dsdt

=

∫ 1

0

(∫ 1

0
c(s, t)νm(s)ds

)
νn(t)dt

=

∫ 1

0
[Kνm](t)νn(t)dt

=⟨Kνm, νn⟩

=⟨λmνm, νn⟩ = δm,nλm

(60)

where δm,n = 1 if m = n, otherwise 0. The result is produced from orthonormality of the Eigenfunctions.

Cov (ξm, ξn) = E[ξmξn]− E[ξm]E[ξn] = δm,nλm (61)

where E[ξm] = E[ξn] = 0 as shown in the first property. The last assertion is confirmed from the two

properties above.

V ar[ξm] = E
[
(ξm − E[ξm])2

]
= E[(ξm)2] = λm (62)

The original process X(t) also has the same properties as the centered one since

X(t) = E[X(t)] + F (t) = µ(t) +
∞∑

m=1

ξmνm(t) (63)

7.3 Theorem (Karhunen-Loéve Expansion)

Let X : [0, 1] → R be a mean-square continuous stochastic process, meaning

lim
ϵ→0

E[(X(t+ ϵ)−X(t))2] = 0 (64)

such that X ∈ L2[0, 1]. Then there exists a basis νm of L2[0, 1] such that for all t ∈ [0, 1] we have the

following representation.

X(t) = µ(t) +
∞∑

m=1

ξmνm(t), (65)

Here, µ(t) is the mean function of X(t) and coefficients ξm are given by
∫ 1
0 (X(t)−µ(t))νm(t)dt. These

coefficients satisfy the following conditions.

1. E [ξm(ω)] = 0

2. Cov (ξm(ω), ξn(ω)) = δm,nλm

3. V ar (ξm(ω)) = λm
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Proof. Let K be a Hilbert-Schmidt operator as in Equation 18.We know that K has a complete

set of Eigenfunctions νm in L2[0, 1] and non-negative Eigenvalues λm since K is a positive compact

self-adjoint operator. With the reminder that ξm satisfy the three conclusions by Lemma 7.2, we prove

this expansion by considering

ϵN (t) := E

[(
X(t)− µ(t)−

N∑
m=1

ξmνm(t)

)2
]
= E

[(
F (t)−

N∑
m=1

ξmνm(t)

)2
]

(66)

where F (t) is the centered process of X(t). Once it is shown that lim
N→∞

ϵN (t) = 0 uniformly in [0,1],

the proof is completed.

ϵN (t) = E

[(
F (t)−

N∑
m=1

ξmνm(t)

)2
]

= E[F (t)2]− 2E
[
F (t)

N∑
m=1

ξmνm(t)

]
+ E

[ N∑
m=1

N∑
n=1

ξmξnνm(t)νn(t)

] (67)

Here, E[F (t)2] = c(t, t) as in Equation 17 since F (t) is the centered process. Now, take the second term

E
[
F (t)

N∑
m=1

ξmνm(t)

]
= E

[
F (t)

N∑
m=1

(∫ 1

0
F (s)νm(s)ds

)
νm(t)

]

= E

[
N∑

m=1

(∫ 1

0
F (t)F (s)νm(s)ds

)
νm(t)

]

=
N∑

m=1

(∫ 1

0
E[F (t)F (s)]νm(s)ds

)
νm(t)

=
N∑

m=1

(∫ 1

0
c(t, s)νm(s)ds

)
νm(t)

=
N∑

m=1

[Kνm](t)νm(t)

=
N∑

m=1

λmνm(t)νm(t) =
N∑

m=1

λmνm(t)2

(68)

where the covariance function c(t, s) has the Hilbert-Schmidt operator as in Equation 18. For the last

term, we derive from Equation 60 that

E
[ N∑
m=1

N∑
n=1

ξmξnνm(t)νn(t)

]
=

N∑
m=1

N∑
n=1

E[ξmξn]νm(t)νn(t)

=

N∑
m=1

N∑
n=1

δm,nλmνm(t)νn(t) =

N∑
m=1

λmνm(t)2

(69)

where δm,n = 1 if m = n, otherwise 0.
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Therefore, by Equations 67, 68, and 69 we obtain

ϵN (t) = c(t, t)−
N∑

m=1

λmνm(t)νm(t) (70)

implementing Mercer’s Theorem this proof is concluded by

lim
N→∞

ϵN (t) = lim
n→∞

E

[(
F (t)−

N∑
m=1

ξmνm(t)

)2
]
= 0 (71)
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