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Introduction

Near-Infrared (NIR) Spectroscopy enables fast diagnostics by
using the NIR region of the electromagnetic spectrum

▶ Spectroscopy results in high-dimensional dataset: Gasoline
dataset (60 x 401)

▶ This set of measurements serves as set of discretized
approximations of smooth spectral curves

xi (tj ,i ) ∈ R, i = 1, . . . ,N, j = 1, . . . , Ji , tj ,i ∈ [T1,T2]

▶ Continuous underlying process where xi (t) exists ∀t ∈ [T1,T2]
but is only observed at tj ,i

▶ Regression to determine relationship between octane rating and
spectral curves
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Random Function

A Random Variable is a function X : Ω → S which is defined on a
common probability space (Ω,F ,P) where Ω is a sample space with
a σ-algebra F and a probability measure P.

▶ If S = R then X is a random variable

▶ If S = Rn then X is a random vector

▶ If S is a space of functions, X is called a Random Function

A Realization of a random function X (ω) is a function

x0(t) = X (ω0)(t) t ∈ E, ω0 ∈ Ω
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Plots

Growth curves of
54 girls age 1-18

NIR spectrum of 60
gasoline samples
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Square Integrable Function

A function is called Square Integrable written f (t) ∈ L2[0, 1] if∫ 1

0
(f (t))2 dt <∞

▶ Without loss of generality, the interval is defined in [0, 1].

Let f , g ∈ L2[0, 1], then we can define inner product by

⟨f , g⟩ =
∫ 1

0
f (t)g(t)dt

▶ Orthogonality of two different functions with ⟨f , g⟩ = 0
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Square Integrable Function

A natural Norm to be defined on L2[0, 1] is the following norm
induced by the inner product.

||f || =
√

⟨f , f ⟩ =

√∫ 1

0
f (t)2dt

This norm naturally induces a Distance on L2[0, 1].

d(f , g) = ||f − g || =
√

⟨f − g , f − g⟩ =

√∫ 1

0
[f (t)− g(t)]2 dt
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Basis Expansion

Basis Expansion is a linear combination of functions as described:

xi (t) =
∑
j∈I

ci ,jϕj(t) ≈
L∑

j=1

ci ,jϕj(t), i = 1, . . . , n, ∀t ∈ E

where ϕj(t) is the j th basis function of the expansion and ci ,j is the
corresponding coefficient. We truncate the basis at L to:

▶ make the function smoother

▶ replace the original curves xi (t) with a smaller collection of cn,m
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Basis Functions

Fourier Basis Functions are elements of the set:

{
√
2 sin(2πnx)|n ∈ N} ∪ {

√
2 cos(2πnx)|n ∈ N} ∪ {1}
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Basis Functions

B-spline Basis Functions are piece-wise polynomial functions
defined by an order and a set of knots.
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Trade Off between Bias and Variance

How do we choose the number L of basis functions?

MSE[X̂ (t)] = Bias2[X̂ (t)] + Var[X̂ (t)]

IMSE[X̂ ] =

∫ 1

0
MSE[X̂ (t)]dt

▶ The larger L, the better the fit to the data, but also more
fitting noise

▶ If L is too small, the expansion would miss some significant
information
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Trade Off between Bias and Variance
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Estimation via Basis Representation

Assume the following Data Generating Process

Y (ω) = α+

∫ 1

0
β(s)X (ω)(s)ds + ϵ(ω)

▶ Y (ω) and ϵ(ω) realize in R and X (ω) realizes in L2[0, 1]

Let {ϕi (t) | i ∈ I} be a basis leading to the following representation

β(t) =
∑
j∈I

cjϕj(t) ≈
L∑

j=1

cjϕj(t)
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Estimation via Basis Representation

We can transform the data generating process into:

Y (ω) = α+

∫ 1

0

∑
j∈I

cjϕj(s)

X (ω)(s)

ds + ϵ(ω)

= α+
∑
j∈I

[
cj

∫ 1

0
X (ω)(s)ϕj(s)ds

]
+ ϵ(ω)

= α+
∑
j∈I

cjZj(ω) + ϵ(ω) ≈ α+
L∑

j=1

cjZj(ω) + ϵ(ω)

Where a Zj(ω) is a scalar random variable.

Equation with Approximated Functions
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Estimation via Basis Representation

Truncating the functional basis allows us to estimate coefficients
using Multivariate Regression leading to an estimated coefficient
vector ĉ ∈ RL and an estimated coefficient function β̂L(t):

β̂L(t) =
L∑

j=1

ĉL,jϕj(t)

This is dependent on...

▶ The basis (ϕj(t))j∈I for the
estimation of β(t)

▶ The truncation parameter L

▶ The basis (ψj(t))j∈L used
for the observations

▶ The truncation parameter
for the observations K
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Karhunen-Loéve Expansion

Mean Function:
µ(t) = E [X (ω)(t)]

Autocovariance Function:

c(t, s) = E
[
(X (ω)(t)− µ(t)) (X (ω)(s)− µ(s))

]
The Eigenvalues and Eigenfunctions: {(λi , νi ) | i ∈ I} are
solutions of the following equation:∫ 1

0
c(t, s)ν(s)ds = λν(t)
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Karhunen-Loéve Expansion
A random function X (ω) can be expressed in terms of its Mean
Function and its Eigenfunctions:

X (ω)(t) = µ(t) +
∞∑
j=1

ξj(ω)νj(t)

Where the ξj are Scalar-Valued Random Variables with the
following properties.

1. E[ξi (ω)] = 0
2. Var(ξi (ω)) = λi

3. Cov(ξi (ω), ξj(ω)) = 0 for
i ̸= j

This is called the Karhunen-Loéve Expansion of X (ω) and the
Eigenfunctions can serve as a basis.

Spectral Representation of Random Vectors
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Functional Principal Component Analysis

Principal Component Analysis can be extended to functional
regressors in the form of Functional Principal Component
Analysis (FPCA).

Empirical Mean Function:

µ̂(t) =
1

n

n∑
j=1

xj(t)

Empirical Autocovariance Function:

ĉ(t, s) =
1

n

n∑
j=1

(xj(t)− µ̂(t)) (xj(s)− µ̂(s))
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Functional Principal Component Analysis

The Eigenvalues and Eigenfunctions: {(λ̂i , ν̂i ) | i ∈ I} are
solutions of the following equation:∫ 1

0
ĉ(t, s)ν̂(s)ds = λ̂ν̂(t)

The {ν̂i (s) | i ∈ I} are called Functional Principal Components
and can serve as a basis for representing the original curves.

The corresponding scores ξ̂i can be derived as

ξ̂j(ω) =

∫ 1

0
(X (ω)(s)− µ̂(s))ν̂j(s)ds

PCA for Random Vectors
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Simulation Setup

Use the Gasoline Dataset (NIR-spectroscopy, 60 × 401) to
generate Similar Curves:

X̃ (ω)(t) = µ̂(t) +
J∑

j=1

ξ̃j(ω)ν̂j(t)

▶ ξ̃ =
(
ξ̃1, . . . , ξ̃J

)′
∼ N (0J , diag(λ̂1, . . . , λ̂J))

▶ Simplification: the ξj do not follow a normal distribution

▶ X̃ (ω)(t), µ̂(t) and ν̂j(t) are approximated as vectors in R401
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Simulation Setup

Following Reiss and Ogden (2007), let f1(t) and f2(t) be two
coefficient functions:

f1(t), smooth function f2(t), bumpy function
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Simulation Setup

Y1,f = ⟨NIR, f ⟩+ Z

(
var(⟨NIR, f ⟩)

0.9
− var(⟨NIR, f ⟩)

)
Y2,f = ⟨NIR, f ⟩+ Z

(
var(⟨NIR, f ⟩)

0.6
− var(⟨NIR, f ⟩)

)
Let these be two responses for f ∈ {f1(t), f2(t)} with Z ∼ N (0, 1).

▶ Four combinations with different number of cubic bspline
basis-function nbasis ∈ {4, 5, . . . , 25} and fourier functions
{1, 3, . . . , 25} to perform regression using basis expansion and
the FPCR approach

▶ Compare results via criteria (CV, Mallows’ CP, ...)
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Simulation - Interpretation of Results

Basis Expansion Regression

▶ Smooth function requires smaller number of nbasis and vice
versa

▶ Setup with higher noise requires smoother function

Performs better on bumpy function with low noise.

Functional Principal Component Regression

▶ Two Functional-PC enough to explain variation

▶ Results quite similar, but bspline setup better for smooth
function with noisy response

Performs better in the noisy setup with the smooth function.

Basis Expansion Results FPCR Results
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Application Setup

Use insights from the simulation study to predict the Octane
Ratings.

▶ Similar setup, but relying on the original 60 spectral curves

▶ Validation set approach: Scores of test data needs to be
estimated by the training data

▶ Report results by Prediction MSE for the evaluated best
model specifications
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Spectral Representation of Random Vectors
Let X (ω) be a random vector realizing in Rp.

▶ Let µx = E(X ) and ΣX = Cov(X )

▶ Let {γi | i = 1, . . . , p} be the orthonormal Eigenvectors of ΣX

▶ Let {λi | i = 1, . . . , p} be the corresponding Eigenvalues of ΣX

Then X can also be represented as

X (ω) = µx +

p∑
i=1

ξi (ω)γi

where the ξi (ω) have the following properties

1. E[ξi (ω)] = 0
2. Var(ξi (ω)) = λi

3. Cov(ξi (ω), ξj(ω)) = 0 for
i ̸= j

Karhunen-Loéve Expansion
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Principal Component Analysis

A related concept is Principal Component Analysis (PCA).

ΣX unknown → sample analogues

▶ Let X ∈ Rn×p contain the standardized regressors

▶ Let Σ̂X = X′X
n

▶ Let {γ̂i | i = 1, . . . , p} be the orthonormal Eigenvectors of Σ̂X

▶ Let {λ̂i | i = 1, . . . , p} be the corresponding Eigenvalues of Σ̂X

Then Zi (ω) = γ̂′iX (ω) is called the i’th principal component and

1. E[Zi (ω)] = 0
2. Var(Zi (ω)) = λ̂i

3. Cov(Zi (ω),Zj(ω)) = 0 for
i ̸= j

Functional Principal Component Analysis
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Estimation with Approximated Functions

Y (ω) = α+

∫ 1

0

β(s)X (ω)(s)ds + ϵ(ω)

= α+

∫ 1

0

∑
j∈I

cjϕj(s)

(∑
k∈L

dk(ω)ψk(s)

)ds + ϵ(ω)

= α+
∑
j∈I

[
cj
∑
k∈L

dk(ω)

∫ 1

0

ϕj(s)ψk(s)ds

]
+ ϵ(ω)

= α+
∑
j∈I

[
cj
∑
k∈L

Zj,k(ω)

]
+ ϵ(ω)

≈ α+
L∑

j=1

[
cj

K∑
k=1

Zj,k(ω)

]
+ ϵ(ω) = α+

L∑
j=1

[
cj Z̃

K
j (ω)

]
+ ϵ(ω)

Equation without Approximated Functions
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Simulation Results - Bspline basis expansion

f1,Y1 f1,Y2 f2,Y1 f2,Y2 n basis
2.1318 71.71 0.6082 1.5345 4
2.0076 71.9395 0.3427 1.2906 5
1.9937 72.2563 0.2456 1.2014 6
2.0365 73.7857 0.2797 1.2495 7
2.1861 79.0485 0.1044 1.1458 8
2.0511 74.1784 0.0356 1.0217 9
2.1052 76.1884 0.0297 1.0393 10
2.1012 76.4031 0.0296 1.0425 11
2.3815 86.1707 0.037 1.1819 12
2.2114 80.6208 0.0363 1.1024 13
2.4495 87.6977 0.038 1.2126 14
2.2887 83.4755 0.0315 1.1363 15
2.5491 93.593 0.0352 1.2652 16

Results
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Simulation Results - Fourier basis expansion

f1,Y1 f1,Y2 f2,Y1 f2,Y2 n basis
2.0292 72.0085 0.512 1.4747 3
2.022 72.6017 0.1616 1.1375 5
2.0355 73.1836 0.0293 0.9907 7
2.062 73.9631 0.029 0.9994 9
2.0881 75.0921 0.0291 1.0139 11
2.0997 75.9422 0.0294 1.0291 13
2.1087 76.7123 0.0298 1.0371 15
2.1301 77.4908 0.03 1.0398 17
2.1535 78.3943 0.0303 1.0509 19
2.1775 79.2058 0.0307 1.0617 21
2.2058 80.3801 0.031 1.077 23
2.2372 81.509 0.0315 1.0905 25

Results

Jonathan Willnow, Jakob Juergens, Jonghun Baek

Scalar on Function Regression with Applications to Near-Infrared Spectroscopy



Simulation Results - Bspline FPCR (nharm = 2)

f1,Y1 f1,Y2 f2,Y1 f2,Y2 expl. var n basis
2.9163 10.8768 0.9599 1.6431 1 4
2.345 10.585 0.8649 1.5631 0.9776 5
2.4187 10.6889 0.8739 1.5759 0.9556 6
2.4971 10.7287 0.8625 1.5723 0.9472 7
2.5799 10.6971 0.8716 1.575 0.9239 8
2.6828 10.7669 0.853 1.5661 0.9178 9
2.825 10.7906 0.8304 1.5622 0.8976 10
2.9082 10.7774 0.8237 1.5424 0.906 11
2.9519 10.8126 0.8286 1.5561 0.9036 12
2.9972 10.8221 0.8404 1.5551 0.9052 13
2.9755 10.7706 0.8396 1.5614 0.9074 14
2.9762 10.7946 0.8476 1.557 0.9058 15
2.9627 10.8067 0.8609 1.5615 0.9061 16

Results
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Simulation Results - Fourier FPCR (nharm = 2)

f1,Y1 f1,Y2 f2,Y1 f2,Y2 expl. var n basis
2.2059 11.2438 0.8768 1.5528 0.9846 3
2.2148 11.2567 0.8227 1.5215 0.9584 5
2.2635 11.2662 0.8828 1.5563 0.9489 7
2.2721 11.2692 0.8811 1.5531 0.9439 9
2.2797 11.2574 0.879 1.555 0.9397 11
2.3039 11.2708 0.8887 1.5591 0.9421 13
2.3248 11.2898 0.8743 1.5514 0.9283 15
2.3798 11.2957 0.875 1.5511 0.9182 17
2.4233 11.3049 0.8632 1.5453 0.9167 19
2.4589 11.3094 0.8619 1.5432 0.9133 21
2.5306 11.331 0.8562 1.5408 0.9082 23
2.5752 11.3272 0.8531 1.5393 0.9062 25

Results
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