Handout 10 - ECON703 (Fall 2023)

1 Linear Algebra

Definition 1.1 (Identity Matrix). Let A € R™*" be square matriz. We call A the n-dimensional identity matriz,
denoted 1, if

Viil,...,ni Alﬂ:l and VZ#j Ai,j:()
Definition 1.2 (Matrix Addition). Let A and B be two m x n matrices. Then, their sum is defined elementwise, i.e.
Wzl,...manzl,...,n: (A+B)l'7j:Ai,j+Bi,j

Definition 1.3 (Scalar Multiplication). Let A be a two m X n matriz and A € R be some scalar. Then, the scalar
product of X with A is defined elementwise, i.e.

Vi=1,....mVj=1,...,n: ()\A)i’j = A, ;
Definition 1.4 (Matrix Multiplication). The product of two matrices A and B, denoted by AB, is defined if and

only if the number of columns of A is equal to the number of rows of B. It is NOT commutative.

Let A € R™*"™ and B = R"*P, then the matriz product AB exists and is defined componentwise by

Vi=1,...,mVj=1,....,p: (AB),,=> A;,B,;

r=1

This product is an m X p matriz.

There are other types of matrix products, for example, the Hadamard product and Kronecker product. These are
used less often, but you will come across them, for example, in Econometrics.

e https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

e https://en.wikipedia.org/wiki/Kronecker_product

Definition 1.5 (Transposition of a Matrix). The transposition of a matrix A € R™*"™  denoted A’ € R™*™ s
defined element-wise as
W:L...,mVj:l,...,n: (Al)ij:Aj’i

and is a n X m matrix.

Definition 1.6 (Determinant of a Matrix). Let A € R™*"™ be a square matriz. Its determinant is defined via the

Leibniz formula.

det(A) = 3" sgn(o) [ Aiwr

oES, i=1

https: //en. wikipedia. org/wiki/Leibniz_ formula_ for_ determinants

In your first year, you will rarely (if at all) need to use determinants for matrices larger than 3 x 3. So, let’s give the
formulas for 2 x 2 and 3 x 3 matrices more directly.

(2 ) e

a b
det | |d e f =aei+bfg+ cdh — ceg — bdi — afh
g h


https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Leibniz_formula_for_determinants

Definition 1.7 (Matrix Inverse). Let A € R™*™ be a square matriz. If there exists some B € R™™ such that
AB =1, then we call B the matriz inverse of A and denote it by A1, It exists if det(A) # 0.

Definition 1.8 (Symmetric Matrix). We say a square matriz A € R™*™ is symmetric if
Vi=1,...,nVj=1,....,n A;; =A4;,;

This is equivalent to saying that A = A’.

Definition 1.9 (Positive / Negative (Semi-)Definite Matrix). We say a symmetric matric A € R™*" is positive

(negative) definite if
Vz € R"\{0}: 2'Az > (<)0

We call it positive (negative) semidefinite if
Vz € R"\{0}: 2'Az > (<)0
Definition 1.10 (Trace). The trace of a square matriz A € R™"*™  denoted tr(A), is the sum of its entries on the
main diagonal.
tT'(A) = Z (077
i=1
Definition 1.11 (Eigenvectors and Eigenvalues). Let A € R"*™ be a square matriz. Eigenvectors of A are vectors
w € R™ that fulfill the following property:
dANER st Au=Au

The A corresponding to some Eigenvector u is called the corresponding Figenvalue. We typically consider Eigenvectors
whose length is normalized to one.

2 Linearity

Definition 2.1 (Linear Transformation). Let W and V' be vector spaces over R and let f: V — W be a function
between them. We say that f is a linear transformation or linear map, if

Vu,v e Vi flu+v) = f(u) + f(v)
Yoe VVAeR: f(\)=Af(v)

Example 2.1 (Matrix). Let A € R™*" be a matriz and define the function f:R™ — R™ by
f(@) = A

then f is a linear transformation.

Proof. Check the two properties with the definition of matrix multiplication given above. O

3 Integration

The two integration rules we use most often during the first year are integration by parts and integration by
substitution.

Theorem 3.1 (Integration by Parts).




Example 3.1 (Integration by Parts). Consider the following integral.
2
/ re**dx
0

wr)=2z = J(z)=1

Then, in our notation from before, we can set
U/(!E) _ 621'

Using partial integration, this gives us the following

2 2 2
1 1 1 1
/ xe?®dy = {Ee%} — / —e2dy = et — (64 - > = -+ §64 ~ 41.199
0 2 0 0

2 4 4 4 4
Theorem 3.2 (Integration by Substitution). Let g : [a,b] — R be a continuously differentiable function and
f:R —= R a continuous function. Then

b g(b)
) g (2)dx = w)du
/a Fg(2))d (@) / L w

Example 3.2 (Integration by Substitution). Consider the following integral.

™

/E (sin(z))? cos(z)dz
0

and set g(x) = sin(x). Then, by integration by substitution:

™

7 sin(%) 1 1
/ (sin(z))? cos(x)dz = / wldu = / widu = [u3]
0 sin(0) 0 3

4 Taylor Approximation

Theorem 4.1 (Taylor Series (Univariate)). Let f € C*(A,R) for some set A C R. Let xg € int(A). Assume that f
is k times differentiable at xo. Then, there exists hy(x) with limg,_, ., hx(xz) = 0 such that

k

fl@)=>" z.l—lf(” (20) (& — 20)" + hy(2)(x — 20)*

=0

We call the following term the k’th order Taylor polynomial:

ko1 o .
Pe(e) =3 5/ o) (@ = @)’

i=0

and the other term the remainder term: Ry (z) = hy(2)(z — m0)*.

We can give explicit formulas for the remainder term that can help us gauge our approximation’s accuracy.

Theorem 4.2 (Lagrange-Form and Cauchy-Form of the Remainder). Let f € C¥(A,R) for some set A C R. Let
xo € int(A). Assume that f is k + 1 times differentiable on the interval (x,xo) with %) being continuous on [z, xo).
Then, we can find an explicit formula for the remainder term of the following form called the Lagrange form:

SED(EL)

3 t _ _ k+1
¢r € [z, x0] st Ri(x) G (x — x0)
Similarly, we can find an expression of the following form, called the Cauchy form:
FR (o)

e € [z, x0] st Ri(z) o (x — &0)*(z — x0)

Example 4.1 (First Order Logarithm Approximation). Let f(x) =log (1 + ). Then we can use the first Taylor
polynomial around x = 0 to approzimate the logarithm for small values of x as

10g(1+z)%10g(1)+:c8%610g(1+x) =0+



	Linear Algebra
	Linearity
	Integration
	Taylor Approximation

