Handout 10 - ECON703 (Fall 2023)

1 Linear Algebra

Definition 1.1 (Identity Matrix). Let $A \in \mathbb{R}^{n \times n}$ be square matrix. We call A the n-dimensional identity matrix, denoted \mathbb{I}_{n}, if

$$
\forall i=1, \ldots, n: \quad A_{i, i}=1 \quad \text { and } \quad \forall i \neq j: \quad A_{i, j}=0
$$

Definition 1.2 (Matrix Addition). Let A and B be two $m \times n$ matrices. Then, their sum is defined elementwise, i.e.

$$
\forall i=1, \ldots, m \forall j=1, \ldots, n: \quad(A+B)_{i, j}=A_{i, j}+B_{i, j}
$$

Definition 1.3 (Scalar Multiplication). Let A be a two $m \times n$ matrix and $\lambda \in \mathbb{R}$ be some scalar. Then, the scalar product of λ with A is defined elementwise, i.e.

$$
\forall i=1, \ldots, m \forall j=1, \ldots, n: \quad(\lambda A)_{i, j}=\lambda A_{i, j}
$$

Definition 1.4 (Matrix Multiplication). The product of two matrices A and B, denoted by $A B$, is defined if and only if the number of columns of A is equal to the number of rows of B. It is NOT commutative.

Let $A \in \mathbb{R}^{m \times n}$ and $B=\mathbb{R}^{n \times p}$, then the matrix product $A B$ exists and is defined componentwise by

$$
\forall i=1, \ldots, m \forall j=1, \ldots, p: \quad(A B)_{i, j}=\sum_{r=1}^{n} A_{i, r} B_{r, j}
$$

This product is an $m \times p$ matrix.
There are other types of matrix products, for example, the Hadamard product and Kronecker product. These are used less often, but you will come across them, for example, in Econometrics.

- https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
- https://en.wikipedia.org/wiki/Kronecker_product

Definition 1.5 (Transposition of a Matrix). The transposition of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $A^{\prime} \in \mathbb{R}^{n \times m}$ is defined element-wise as

$$
\forall i=1, \ldots, m \forall j=1, \ldots, n: \quad\left(A^{\prime}\right)_{i, j}=A_{j, i}
$$

and is a $n \times m$ matrix.
Definition 1.6 (Determinant of a Matrix). Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Its determinant is defined via the Leibniz formula.

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

https://en.wikipedia.org/wiki/Leibniz_formula_for_determinants

In your first year, you will rarely (if at all) need to use determinants for matrices larger than 3×3. So, let's give the formulas for 2×2 and 3×3 matrices more directly.

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) & =a d-c b \\
\operatorname{det}\left(\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\right) & =a e i+b f g+c d h-c e g-b d i-a f h
\end{aligned}
$$

Definition 1.7 (Matrix Inverse). Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. If there exists some $B \in \mathbb{R}^{n \times n}$ such that $A B=\mathbb{I}_{n}$, then we call B the matrix inverse of A and denote it by A^{-1}. It exists if $\operatorname{det}(A) \neq 0$.

Definition 1.8 (Symmetric Matrix). We say a square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if

$$
\forall i=1, \ldots, n \forall j=1, \ldots, n \quad A_{i, j}=A_{j, i}
$$

This is equivalent to saying that $A=A^{\prime}$.
Definition 1.9 (Positive / Negative (Semi-)Definite Matrix). We say a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive (negative) definite if

$$
\forall x \in \mathbb{R}^{n} \backslash\{0\}: \quad x^{\prime} A x>(<) 0
$$

We call it positive (negative) semidefinite if

$$
\forall x \in \mathbb{R}^{n} \backslash\{0\}: \quad x^{\prime} A x \geq(\leq) 0
$$

Definition 1.10 (Trace). The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr}(A)$, is the sum of its entries on the main diagonal.

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Definition 1.11 (Eigenvectors and Eigenvalues). Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Eigenvectors of A are vectors $\mu \in \mathbb{R}^{n}$ that fulfill the following property:

$$
\exists \lambda \in \mathbb{R} \quad \text { s.t. } \quad A \mu=\lambda \mu
$$

The λ corresponding to some Eigenvector μ is called the corresponding Eigenvalue. We typically consider Eigenvectors whose length is normalized to one.

2 Linearity

Definition 2.1 (Linear Transformation). Let W and V be vector spaces over \mathbb{R} and let $f: V \rightarrow W$ be a function between them. We say that f is a linear transformation or linear map, if

$$
\begin{aligned}
\forall u, v \in V: & f(u+v)=f(u)+f(v) \\
\forall v \in V \forall \lambda \in \mathbb{R}: & f(\lambda v)=\lambda f(v)
\end{aligned}
$$

Example 2.1 (Matrix). Let $A \in \mathbb{R}^{m \times n}$ be a matrix and define the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
f(x)=A x
$$

then f is a linear transformation.

Proof. Check the two properties with the definition of matrix multiplication given above.

3 Integration

The two integration rules we use most often during the first year are integration by parts and integration by substitution.

Theorem 3.1 (Integration by Parts).

$$
\int_{a}^{b} u(x) v^{\prime}(x) \mathrm{d} x=\left.[u(x) v(x)]\right|_{a} ^{b}-\int_{a}^{b} u^{\prime}(x) v(x) \mathrm{d} x
$$

Example 3.1 (Integration by Parts). Consider the following integral.

$$
\int_{0}^{2} x e^{2 x} \mathrm{~d} x
$$

Then, in our notation from before, we can set

$$
\begin{array}{rlr}
u(x)=x & \Longrightarrow \quad u^{\prime}(x)=1 \\
v^{\prime}(x)=e^{2 x} & \Longrightarrow \quad v(x)=\frac{1}{2} e^{2 x}
\end{array}
$$

Using partial integration, this gives us the following

$$
\int_{0}^{2} x e^{2 x} \mathrm{~d} x=\left.\left[\frac{x}{2} e^{2 x}\right]\right|_{0} ^{2}-\int_{0}^{2} \frac{1}{2} e^{2 x} \mathrm{~d} x=e^{4}-\left(\frac{1}{4} e^{4}-\frac{1}{4}\right)=\frac{1}{4}+\frac{3}{4} e^{4} \approx 41.199
$$

Theorem 3.2 (Integration by Substitution). Let $g:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function and $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function. Then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) \mathrm{d} x=\int_{g(a)}^{g(b)} f(u) \mathrm{d} u
$$

Example 3.2 (Integration by Substitution). Consider the following integral.

$$
\int_{0}^{\frac{\pi}{2}}(\sin (x))^{2} \cos (x) \mathrm{d} x
$$

and set $g(x)=\sin (x)$. Then, by integration by substitution:

$$
\int_{0}^{\frac{\pi}{2}}(\sin (x))^{2} \cos (x) \mathrm{d} x=\int_{\sin (0)}^{\sin \left(\frac{\pi}{2}\right)} u^{2} \mathrm{~d} u=\int_{0}^{1} u^{2} \mathrm{~d} u=\left.\left[\frac{1}{3} u^{3}\right]\right|_{0} ^{1}=\frac{1}{3}
$$

4 Taylor Approximation

Theorem 4.1 (Taylor Series (Univariate)). Let $f \in \mathcal{C}^{k}(A, \mathbb{R})$ for some set $A \subset \mathbb{R}$. Let $x_{0} \in \operatorname{int}(A)$. Assume that f is k times differentiable at x_{0}. Then, there exists $h_{k}(x)$ with $\lim _{x \rightarrow x_{0}} h_{k}(x)=0$ such that

$$
f(x)=\sum_{i=0}^{k} \frac{1}{i!} f^{(i)}\left(x_{0}\right)\left(x-x_{0}\right)^{i}+h_{k}(x)\left(x-x_{0}\right)^{k}
$$

We call the following term the k'th order Taylor polynomial:

$$
P_{k}(x)=\sum_{i=0}^{k} \frac{1}{i!} f^{(i)}\left(x_{0}\right)\left(x-x_{0}\right)^{i}
$$

and the other term the remainder term: $R_{k}(x)=h_{k}(x)\left(x-x_{0}\right)^{k}$.

We can give explicit formulas for the remainder term that can help us gauge our approximation's accuracy.
Theorem 4.2 (Lagrange-Form and Cauchy-Form of the Remainder). Let $f \in \mathcal{C}^{k}(A, \mathbb{R})$ for some set $A \subset \mathbb{R}$. Let $x_{0} \in \operatorname{int}(A)$. Assume that f is $k+1$ times differentiable on the interval $\left(x, x_{0}\right)$ with $f^{(k)}$ being continuous on $\left[x, x_{0}\right]$. Then, we can find an explicit formula for the remainder term of the following form called the Lagrange form:

$$
\exists \xi_{L} \in\left[x, x_{0}\right] \quad \text { s.t. } \quad R_{k}(x)=\frac{f^{(k+1)}\left(\xi_{L}\right)}{(k+1)!}\left(x-x_{0}\right)^{k+1}
$$

Similarly, we can find an expression of the following form, called the Cauchy form:

$$
\exists \xi_{C} \in\left[x, x_{0}\right] \quad \text { s.t. } \quad R_{k}(x)=\frac{f^{(k+1)}\left(\xi_{C}\right)}{k!}\left(x-\xi_{C}\right)^{k}\left(x-x_{0}\right)
$$

Example 4.1 (First Order Logarithm Approximation). Let $f(x)=\log (1+x)$. Then we can use the first Taylor polynomial around $x=0$ to approximate the logarithm for small values of x as

$$
\log (1+x) \approx \log (1)+\left.x \frac{\partial}{\partial x} \log (1+x)\right|_{x=0}=0+\frac{x}{1+0}=x
$$

