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1 Supremum and Infimum

Example 1.1 (Approaching One). Let X = {1− 1
n | n ∈ N}. Then supX = 1.

Proof. Step 1: Show that 1 is an upper bound of X.
Observe that ∀n ∈ N : 1

n > 0. Thus ∀n ∈ N : 1− 1
n ≤ 1.

Step 2: Show that for any upper bound u of X, we have u ≥ 1.
Let u be an upper bound of X and assume (for the sake of contradiction) that u < 1. But then:

∃k ∈ N s.t.
1

k
< 1− u =⇒ ∃k ∈ N s.t. 1− 1

k
> u =⇒ ∃x ∈ X s.t. x > u

Contradiction! Thus, 1 is the supremum of X.

Example 1.2 (Supremum and Infimum of a Square). Let A = (0, 1)× (0, 1) ⊂ R2 and consider the following partial
order ⪯ on R2:

∀a, b ∈ A : (a ⪯ b) ⇐⇒ (b1 ≥ a1 ∧ b2 ≥ a2)

then
supA = (1, 1) and inf A = (0, 0)

Proof. Let’s only consider the supremum; the infimum works analogously.
Step 1: Show that (1, 1) is an upper bound of A with respect to the partial order.

∀a ∈ A : a1 < 1 ∧ a2 < 1 =⇒ ∀a ∈ A : a ⪯ (1, 1)

Therefore, (1, 1) is an upper bound of A with respect to the partial order ⪯.

Step 2: Show that for any other upper bound u of A, we have (1, 1) ⪯ u.
Let u be an upper bound of A. Then:

∀a ∈ A : a ⪯ u =⇒ ∀a ∈ A : u1 ≥ a1 ∧ u2 ≥ a2

=⇒ ∀x ∈ (0, 1) : u1 ≥ x ∧ u2 ≥ x

=⇒ u1 ≥ 1 ∧ u2 ≥ 1

=⇒ (1, 1) ⪯ u

Thus, (1, 1) is the supremum of A.

2 Metric Spaces and Open/Closed Sets

Example 2.1 (Euclidean Space with Maximum Distance). Let n ∈ N. Then Rn combined with the following
operations is a vector space over the real numbers R.

+V : Rn × Rn → Rn ∀x, y ∈ Rn (x+V y)i = xi + yi ∀i = 1, . . . , n

·V : R× Rn → Rn ∀x ∈ Rn ∀λ ∈ R (λ ·V x)i = λxi ∀i = 1, . . . , n

We call it the n-dimensional Euclidean Space. The maximum distance on this space is

d(x, y) = max
i=1,...,n

|xi − yi|

Together, these form a metric space.
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Proof. To show that this is a metric space, we have to show that d fulfills the properties of a metric.

1. ∀v ∈ V : d(v, v) = 0

2. Positivity: ∀u, v ∈ V with u ̸= v : d(u, v) > 0

3. Symmetry: ∀u, v ∈ V : d(u, v) = d(v, u)

4. Triangle Inequality: ∀u, v, w ∈ V : d(u,w) ≤ d(u, v) + d(v, w)

Let’s check them one by one.

1. Holds since ∀v ∈ Rn ∀i = 1, . . . , n : vi − vi = 0 ✓

2. Holds since ∀a ∈ R : |a| ≥ 0 ✓

3. Holds since ∀a, b ∈ R : |a− b| = |b− a| ✓

4. Let’s check this one in a bit more detail. Let x, y, z ∈ Rn

d(x, z) = max
i=1,...,n

|xi − zi| = max
i=1,...,n

|xi − yi + yi − zi|

≤ max
i=1,...,n

[ |xi − yi|+ |yi − zi| ]

≤ max
i=1,...,n

|xi − yi|+ max
j=1,...,n

|yj − zj | = d(x, y) + d(y, z) ✓

One important thing to understand about open and closed sets is the following:

A subset is not like a door: it can be open, closed, both, or neither.

Example 2.2 (Open and Closed Sets). Consider the following Sets as subsets of R2 and let d(x, y) be the Euclidean
distance between two points x, y ∈ R2.

1. R2

2. ∅

3. A = {x ∈ R2 | d(x, (0, 0)) ≤ 1}

4. B = {x ∈ R2 | d(x, (0, 0)) < 1}

5. C = {x ∈ R2 | d(x, (0, 0)) = 1}

6. D = A\{x ∈ R2 | x1 > 0}

7. E = B\{x ∈ R2 | x1 > 0}

8. F = A\{x ∈ R2 | x1 ≥ 0}

9. G = B\{x ∈ R2 | x1 ≥ 0}

10. H = {(0, 0)}

Are they open, closed, both, or neither?

3 Sequences and Series

Definition 3.1 (Convergent Sequence). Let (X, dX) be a metric space and (xn)n∈N be a sequence in X. We say
that xn converges to x, denoted by limn→∞ xn = x or xn → x as n → ∞, if

∀ϵ > 0 ∃Nϵ ∈ N such that ∀n > Nϵ : dX(xn, x) < ϵ

Example 3.1 (Geometric Series). Let (xn)n∈N be given by xn =
∑n−1

i=0 ri for r ∈ (0, 1). Then (xn)n∈N is a
convergent sequence with limn→∞ xn = 1

1−r .
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Proof. First, we show that the following formula gives the value of a partial sum of the geometric series.

xn =

n−1∑
i=0

ri =
1− rn

1− r

We will do so using a proof by induction.

• Base Case: n = 1

x1 =

0∑
i=0

ri = r0 = 1 =
1− r1

1− r

• Induction Step: Assume that xn = 1−rn

1−r . Then

xn+1 = xn + rn =
1− rn

1− r
+ rn =

(1− rn) + (1− r)rn

1− r
=

(1− rn) + (rn − rn+1)

1− r
=

1− rn+1

1− r

Thus, we have shown that the assumed formula for the partial sums holds.

If the limit exists, this gives us the following statement.

∞∑
i=1

ri = lim
n→∞

n∑
i=1

ri = lim
n→∞

1− rn

1− r

We can show that the second limit exists in the following way.

lim
n→∞

1− rn

1− r
=

1

1− r

(
1− lim

n→∞
rn

)
=

1

1− r
(1− 0) =

1

1− r

where the second equality holds since |r| < 1. Thus, the series is convergent and converges to 1
1−r .

Example 3.2 (Harmonic Series). Let (xn)n∈N be given by xn =
∑n

i=1
1
i . Then (xn)n∈N diverges.

Proof. Observe that we can group the terms of the harmonic series as follows:

∞∑
i=1

1

i
= 1 +

∞∑
i=1

2i−1∑
j=1

1

2i−1 + j

 = 1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + . . .

But then

∀i ∈ N :

2i−1∑
j=1

1

2i−1 + j
≥ 1

2

and thus
∞∑
i=1

1

i
≥

∞∑
i=1

1

2
= ∞

Thus
∑∞

i=1
1
i clearly diverges.

4 Continuity

Definition 4.1 (Continuity). Let (X, dX) and (Y, dY ) be a metric spaces and f : X → Y a function from X to Y .
We say that f is continuous at a point x ∈ X if

∀ϵ > 0 ∃δ > 0 such that ∀x′ ∈ X : dX(x, x′) < δ =⇒ dY (f(x), f(x
′)) < ϵ
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