Handout 2 - ECON703 (Fall 2023)

1 Supremum and Infimum

Example 1.1 (Approaching One). Let $X=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Then $\sup X=1$.

Proof. Step 1: Show that 1 is an upper bound of X.
Observe that $\forall n \in \mathbb{N}: \frac{1}{n}>0$. Thus $\forall n \in \mathbb{N}: 1-\frac{1}{n} \leq 1$.
Step 2: Show that for any upper bound u of X, we have $u \geq 1$.
Let u be an upper bound of X and assume (for the sake of contradiction) that $u<1$. But then:

$$
\exists k \in \mathbb{N} \quad \text { s.t. } \quad \frac{1}{k}<1-u \Longrightarrow \exists k \in \mathbb{N} \quad \text { s.t. } \quad 1-\frac{1}{k}>u \Longrightarrow \exists x \in X \quad \text { s.t. } \quad x>u
$$

Contradiction! Thus, 1 is the supremum of X.
Example 1.2 (Supremum and Infimum of a Square). Let $A=(0,1) \times(0,1) \subset \mathbb{R}^{2}$ and consider the following partial order \preceq on \mathbb{R}^{2} :

$$
\forall a, b \in A:(a \preceq b) \Longleftrightarrow\left(b_{1} \geq a_{1} \wedge b_{2} \geq a_{2}\right)
$$

then

$$
\sup A=(1,1) \quad \text { and } \quad \inf A=(0,0)
$$

Proof. Let's only consider the supremum; the infimum works analogously.
Step 1: Show that $(1,1)$ is an upper bound of A with respect to the partial order.

$$
\forall a \in A: a_{1}<1 \wedge a_{2}<1 \Longrightarrow \forall a \in A: a \preceq(1,1)
$$

Therefore, $(1,1)$ is an upper bound of A with respect to the partial order \preceq.
Step 2: Show that for any other upper bound u of A, we have $(1,1) \preceq u$.
Let u be an upper bound of A. Then:

$$
\begin{aligned}
\forall a \in A: a \preceq u & \Longrightarrow \forall a \in A: u_{1} \geq a_{1} \wedge u_{2} \geq a_{2} \\
& \Longrightarrow \forall x \in(0,1): u_{1} \geq x \wedge u_{2} \geq x \\
& \Longrightarrow u_{1} \geq 1 \wedge u_{2} \geq 1 \\
& \Longrightarrow(1,1) \preceq u
\end{aligned}
$$

Thus, $(1,1)$ is the supremum of A.

2 Metric Spaces and Open/Closed Sets

Example 2.1 (Euclidean Space with Maximum Distance). Let $n \in \mathbb{N}$. Then \mathbb{R}^{n} combined with the following operations is a vector space over the real numbers \mathbb{R}.

$$
\begin{aligned}
& +_{\mathbb{V}}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad \forall x, y \in \mathbb{R}^{n} \quad(x+\mathbb{v} y)_{i}=x_{i}+y_{i} \quad \forall i=1, \ldots, n \\
& \cdot \mathbb{V}: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad \forall x \in \mathbb{R}^{n} \forall \lambda \in \mathbb{R} \quad(\lambda \cdot \mathbb{V} x)_{i}=\lambda x_{i} \quad \forall i=1, \ldots, n
\end{aligned}
$$

We call it the n-dimensional Euclidean Space. The maximum distance on this space is

$$
d(x, y)=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|
$$

Together, these form a metric space.

Proof. To show that this is a metric space, we have to show that d fulfills the properties of a metric.

1. $\forall v \in \mathbb{V}: d(v, v)=0$
2. Positivity: $\forall u, v \in \mathbb{V}$ with $u \neq v: d(u, v)>0$
3. Symmetry: $\forall u, v \in \mathbb{V}: d(u, v)=d(v, u)$
4. Triangle Inequality: $\forall u, v, w \in \mathbb{V}: d(u, w) \leq d(u, v)+d(v, w)$

Let's check them one by one.

1. Holds since $\forall v \in \mathbb{R}^{n} \forall i=1, \ldots, n: v_{i}-v_{i}=0 \quad \checkmark$
2. Holds since $\forall a \in \mathbb{R}:|a| \geq 0 \quad \checkmark$
3. Holds since $\forall a, b \in \mathbb{R}:|a-b|=|b-a| \quad \checkmark$
4. Let's check this one in a bit more detail. Let $x, y, z \in \mathbb{R}^{n}$

$$
\begin{aligned}
d(x, z)= & \max _{i=1, \ldots, n}\left|x_{i}-z_{i}\right|=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \\
& \leq \max _{i=1, \ldots, n}\left[\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right] \\
& \leq \max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|+\max _{j=1, \ldots, n}\left|y_{j}-z_{j}\right|=d(x, y)+d(y, z)
\end{aligned}
$$

One important thing to understand about open and closed sets is the following:

A subset is not like a door: it can be open, closed, both, or neither.
Example 2.2 (Open and Closed Sets). Consider the following Sets as subsets of \mathbb{R}^{2} and let $d(x, y)$ be the Euclidean distance between two points $x, y \in \mathbb{R}^{2}$.

1. \mathbb{R}^{2}
2. \emptyset
3. $A=\left\{x \in \mathbb{R}^{2} \mid d(x,(0,0)) \leq 1\right\}$
4. $B=\left\{x \in \mathbb{R}^{2} \mid d(x,(0,0))<1\right\}$
5. $C=\left\{x \in \mathbb{R}^{2} \mid d(x,(0,0))=1\right\}$
6. $D=A \backslash\left\{x \in \mathbb{R}^{2} \mid x_{1}>0\right\}$
7. $E=B \backslash\left\{x \in \mathbb{R}^{2} \mid x_{1}>0\right\}$
8. $F=A \backslash\left\{x \in \mathbb{R}^{2} \mid x_{1} \geq 0\right\}$
9. $G=B \backslash\left\{x \in \mathbb{R}^{2} \mid x_{1} \geq 0\right\}$
10. $H=\{(0,0)\}$

Are they open, closed, both, or neither?

3 Sequences and Series

Definition 3.1 (Convergent Sequence). Let $\left(X, d_{X}\right)$ be a metric space and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. We say that x_{n} converges to \bar{x}, denoted by $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$ or $x_{n} \rightarrow \bar{x}$ as $n \rightarrow \infty$, if

$$
\forall \epsilon>0 \exists N_{\epsilon} \in \mathbb{N} \quad \text { such that } \quad \forall n>N_{\epsilon}: d_{X}\left(x_{n}, \bar{x}\right)<\epsilon
$$

Example 3.1 (Geometric Series). Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be given by $x_{n}=\sum_{i=0}^{n-1} r^{i}$ for $r \in(0,1)$. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence with $\lim _{n \rightarrow \infty} x_{n}=\frac{1}{1-r}$.

Proof. First, we show that the following formula gives the value of a partial sum of the geometric series.

$$
x_{n}=\sum_{i=0}^{n-1} r^{i}=\frac{1-r^{n}}{1-r}
$$

We will do so using a proof by induction.

- Base Case: $n=1$

$$
x_{1}=\sum_{i=0}^{0} r^{i}=r^{0}=1=\frac{1-r^{1}}{1-r}
$$

- Induction Step: Assume that $x_{n}=\frac{1-r^{n}}{1-r}$. Then

$$
x_{n+1}=x_{n}+r^{n}=\frac{1-r^{n}}{1-r}+r^{n}=\frac{\left(1-r^{n}\right)+(1-r) r^{n}}{1-r}=\frac{\left(1-r^{n}\right)+\left(r^{n}-r^{n+1}\right)}{1-r}=\frac{1-r^{n+1}}{1-r}
$$

Thus, we have shown that the assumed formula for the partial sums holds.

If the limit exists, this gives us the following statement.

$$
\sum_{i=1}^{\infty} r^{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} r^{i}=\lim _{n \rightarrow \infty} \frac{1-r^{n}}{1-r}
$$

We can show that the second limit exists in the following way.

$$
\lim _{n \rightarrow \infty} \frac{1-r^{n}}{1-r}=\frac{1}{1-r}\left(1-\lim _{n \rightarrow \infty} r^{n}\right)=\frac{1}{1-r}(1-0)=\frac{1}{1-r}
$$

where the second equality holds since $|r|<1$. Thus, the series is convergent and converges to $\frac{1}{1-r}$.
Example 3.2 (Harmonic Series). Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be given by $x_{n}=\sum_{i=1}^{n} \frac{1}{i}$. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ diverges.

Proof. Observe that we can group the terms of the harmonic series as follows:

$$
\sum_{i=1}^{\infty} \frac{1}{i}=1+\sum_{i=1}^{\infty}\left(\sum_{j=1}^{2^{i-1}} \frac{1}{2^{i-1}+j}\right)=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\ldots
$$

But then

$$
\forall i \in \mathbb{N}: \quad \sum_{j=1}^{2^{i-1}} \frac{1}{2^{i-1}+j} \geq \frac{1}{2}
$$

and thus

$$
\sum_{i=1}^{\infty} \frac{1}{i} \geq \sum_{i=1}^{\infty} \frac{1}{2}=\infty
$$

Thus $\sum_{i=1}^{\infty} \frac{1}{i}$ clearly diverges.

4 Continuity

Definition 4.1 (Continuity). Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be a metric spaces and $f: X \rightarrow Y$ a function from X to Y. We say that f is continuous at a point $x \in X$ if

$$
\forall \epsilon>0 \exists \delta>0 \quad \text { such that } \quad \forall x^{\prime} \in X: \quad d_{X}\left(x, x^{\prime}\right)<\delta \Longrightarrow d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon
$$

