Handout 3 - ECON703 (Fall 2023)

1 Cauchy-Sequences and Completeness

Definition 1.1 (Cauchy-Sequence). Let (X, dx) be a metric space and (zy)nen be a sequence in X. Then (Tp)neN
is called a Cauchy sequence if

Ve > 03N, € N sucht that VYm,n > N, : dx(xp,xm) < €

Example 1.1 (Partial Sums of the Geometric Series). The partial sums of the geometric series for r = % are a

Cauchy sequence.
Proof. Recall from Handout 2 that for |r| <1
~ ;  1—ptt 1
f=——— forr=- 27 =2(1-2""1)=2-2""
; r T orr=g ; ( )

Then, we can find the following formula for the distance between two partial sums. Let wlog m > n.
0< Y r'=> ri=[2-27"—242" =277 -2 =2"" -2 <2 7"
=0 =0
Choose some € > 0, then IN, € N such that 27V < e. And ¥n > N, : 27" < €. But then:

m n
Ym,n > N : \Zri—qu <e
=0 =0
O

Definition 1.2 (Complete Metric Space). Let (X, dx) be a metric space. (X,dx) is called complete if every Cauchy
sequence in (X, dx) converges in (X,dx), i.e. has a limit in X.

Theorem 1.1 (The Real Numbers). Consider the metric space (R, d) where d(x,y) = |y — x|. This metric space is
complete.
Proof. Let (z,)nen be a Cauchy sequence in R. Then {z,},en is bounded because

AN eNVm > N: d(xyi1,zm) <1

= {zp}n>n is bounded below by xy41 — 1 and above by 241 + 1. Thus (2, )nen is a bounded sequence and
contains a convergent subsequence (x,,);en (Bolzano-Weierstrass Theorem) with lim; o 2,, = 2*. Choose € > 0
arbitrary.

ANe1 e NVn,m > Ne1: d(zn, zm) < and IN 2 € NVE > N.o:  d(xg,,,z") <

NN e
[NCNNeY

Let N. = max{N, 1, Nc2}. Then

A—ineq.

Vk > Ne:d(zg, %) < d(xg,Zn,) + d(@g,, %) <€

And thus lim,,_, z,, = z*. O



2 Bolzano-Weierstrass Theorem

Theorem 2.1 (Bolzano-Weierstrass in R). Every infinite bounded sequence (x,)nen tn R has a convergent subse-
quence.

Intuitive “Proof”. Call n € N a peak of (zp)neny f m >n = x, > xp.
Consider the following cases:

1. (zn)nen has infinitely many peaks ny < ng < ng <....
Then (2,,);jen is monotonically decreasing and bounded below. It is thereby convergent by the monotone
convergence theorem.

2. (zn)nen has finitely many peaks. Let N be the last peak and let ny = N + 1.
ny is not a peak = Jng > n; such that x,, > x,,.
ng is not a peak = Ing > ngy such that x,, > z,, and so forth.
Then (z,,);jen is a bounded monotonically increasing sequence. It is convergent by the bounded convergence
theorem.

3. (n)nen has no peaks. Let N = —1. The argument provided in 2 applies.

O

Theorem 2.2 (Bolzano-Weierstrass). Every infinite bounded sequence (zn)nen in R™ has a convergent subsequence.
Proof. We repeatedly apply Theorem to the dimensions of (z,)nen to construct such a sequence.

e The first dimension of (z,)nen is a bounded sequence in R. Apply Theorem to the first dimension of
(Zn)nen to obtain a subsequence (x,,);eny whose first coordinate converges.

e The second dimension of (x,,);en is a bounded sequence in R. Apply Theorem to the second dimension of
(zn,)ien to obtain a sequence (zx)ren whose first and second coordinates converges. (zx)ren is a subsequence
of (zn,)ien and thus a subsequence of (z,,)nen.

Iterate this process to obtain a subsequence of (z,,),ecn that converges in all of its n dimensions. This sequence is a
convergent subsequence of (z,,)nen. O

3 Contraction Mappings

Definition 3.1 (Contraction Mapping). Let (X,dx) be a metric space. A function f : X — X is called a contraction
mapping on X if
38 €10,1) such that Yo,y € X : dx(f(z), f(y)) < Bdx(z,y)

Example 3.1 (Example). A simple example for a contraction mapping is f(x) = a+ bx for b€ [0,1).
Example 3.2 (Counterexample). Let f: R>q — R be given by f(z) =« (1 - 1_%1)
Observe that this function shrinks distances between points. WlogEI, lety >«
5w~ @l =y (1~ ) —a (1- o) <y—z=ly ]
v Y\ T 1y 1+a) Y7770
Y

<— = 2(1+y)<y(l+z) <= z<y V

<~
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lwithout loss of generality



Then let y =+ 1 and thus |y — x| =1
lim |f(y) — f(a)] = lim |y (1— — - — )
1m — = Jlim _ — —
T—00 Y t m—>ooy 14y * 1+
fim (2 +1) (1= — - lim — S
= 1m _—_— — — = im — — — =
.'E—>oo$ 24+ v 1+x zoooxr+2 x+1

Even though f shrinks distances, its Lipschitz constant is not bounded away from one. Thus, it is not a contraction
mapping.

Definition 3.2 (Fixed Point). Let f : X =Y be a function from X to Y. We say x € X is a fived point of f if
flz) ==

Theorem 3.1 (Banach Fixed Point Theorem). Let (X,dx) be a non-empty complete metric space. Let f : X — X
be a contraction mapping on X. Then f has a unique fived point x* in X.

Proof. Choose xg € X arbitrarily. Define the sequence (z,,)nen recursively by: Vn € Ng : z,4+1 = f(x,). Note the
following statement, which follows from iterated application of the contraction mapping definition.

dx (Tpq1,Tn) < f"dx (21, 20)

Next, we show that (z,)nen is a Cauchy sequence. Let m,n € N and wlog m > n

o m—1 m—1 m—n—1
dx(@men) 2 S dx(wnwin) € 3 Bdx(wo,a1) = Bdx(woz) S B
i=n - i=n 1 i=0
< B"dx (o, 1) ; B = B"dx(zo, xl)m
Choose € > 0 arbitrary. Then
N, € N such that ﬁNfdxl(xo’;l) <€

and thus
VYm,n > Ne:  dx(Tm,x,) <€

Therefore, (z,)nen is a Cauchy sequence. Since (X, dx) is complete, (z,)nen converges in (X, dx).
Let 2* = lim,,—y 00 Tn-

dx(z*, f(z*)) < dx(z*,zm) +dx(zm, f(2*) <dx (2", xm) + Bdx (Tm—1, ")
But

mlgnOo dx(x*,xm) =0

Thus, we can bound dx (z*, f(z*)) by arbitrarily small positive values. Thus, dx (x*, f(2*)) = 0 meaning that z* is
a fixed point of f.

Assume (for the sake of contradiction) that there is a second fixed point; let’s call it x**.
dx (a",2") = dx (f(27), f(«™)) < Bdx (27, 2™)
Contradiction! Thus x* has to be the unique fixed point of f. O

Example 3.3 (Dynamic Programming). Don’t worry!

You’ll see this in much more detail during your Macro class! So I will leave out all the nuance here. Let Cy(R) be
the space of continuous and bounded functions on the real numbers. Let T : C,(R) — Cy(R) be defined pointwise by:

Tl](z) = max (u(z —z) + fv(2))
z€l'(x)
where T' is some (feasibility)-correspondence.

Then we can show (under some conditions) that T is a contraction mapping on Cy(R). It thus has a fized point,
which will be useful in A LOT of economic problems. (Dynamic Optimization)



4 Convergence of Functions

Definition 4.1 (Pointwise Convergence). Let (fp)nen with f: R — R be a sequence of functions. We say that f,
converges pointwise to some function f : R — R if:

Ve eR: nh_}ngo fulx) = f(z)

Definition 4.2 (Uniform Convergence). Let (f,)nen with f: R — R be a sequence of functions. We say that f,
converges uniformly to some function f : R — R if:

lim sup|fn(z) — f(z)] =0

n—oQ zER

Example 4.1 (Pointwise but not Uniform Convergence). Let f, : [0,1) = [0,1) be given by fn(x) = x™. Then f,
converges pointwise to f(x) = 0. However, f, does not converge uniformly.

02

015 fn(x) =0.2x"

forn=12345
01

005

Proof. Take x € [0,1) arbitrarily. Then lim,,_,o, 2™ = 0. Thus f,, converges pointwise to f(z) = 0.
f is the only candidate for uniform convergence. However,

VneN: sup [z"—-0/=1
z€][0,1)

Thus, f,, does not converge uniformly. O
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