
Handout 3 - ECON703 (Fall 2023)

1 Cauchy-Sequences and Completeness

Definition 1.1 (Cauchy-Sequence). Let (X, dX) be a metric space and (xn)n∈N be a sequence in X. Then (xn)n∈N
is called a Cauchy sequence if

∀ϵ > 0 ∃Nϵ ∈ N sucht that ∀m,n > Nϵ : dX(xn, xm) < ϵ

Example 1.1 (Partial Sums of the Geometric Series). The partial sums of the geometric series for r = 1
2 are a

Cauchy sequence.

Proof. Recall from Handout 2 that for |r| < 1

n∑
i=0

ri =
1− rn+1

1− r
for r =

1

2

n∑
i=0

2−i = 2(1− 2−n−1) = 2− 2−n

Then, we can find the following formula for the distance between two partial sums. Let wlog m > n.

0 < |
m∑
i=0

ri −
n∑

i=0

ri| = |2− 2−m − 2 + 2−n| = |2−n − 2−m| = 2−n − 2−m < 2−n

Choose some ϵ > 0, then ∃Nϵ ∈ N such that 2−Nϵ < ϵ. And ∀n > Nϵ : 2−n < ϵ. But then:

∀m,n > Nϵ : |
m∑
i=0

ri −
n∑

i=0

ri| < ϵ

Definition 1.2 (Complete Metric Space). Let (X, dX) be a metric space. (X, dX) is called complete if every Cauchy
sequence in (X, dX) converges in (X, dX), i.e. has a limit in X.

Theorem 1.1 (The Real Numbers). Consider the metric space (R, d) where d(x, y) = |y − x|. This metric space is
complete.

Proof. Let (xn)n∈N be a Cauchy sequence in R. Then {xn}n∈N is bounded because

∃N ∈ N ∀m > N : d(xN+1, xm) < 1

=⇒ {xn}n>N is bounded below by xN+1 − 1 and above by xN+1 + 1. Thus (xn)n∈N is a bounded sequence and
contains a convergent subsequence (xni

)i∈N (Bolzano-Weierstrass Theorem) with limi→∞ xni
= x∗. Choose ϵ > 0

arbitrary.

∃Nϵ,1 ∈ N ∀n,m > Nϵ,1 : d(xn, xm) <
ϵ

2
and ∃Nϵ,2 ∈ N ∀k > Nϵ,2 : d(xnk

, x∗) <
ϵ

2

Let Nϵ = max{Nϵ,1, Nϵ,2}. Then

∀k > Nϵ : d(xk, x
∗)

∆−ineq.
≤ d(xk, xnk

) + d(xnk
, x∗) ≤ ϵ

And thus limn→ xn = x∗.

1



2 Bolzano-Weierstrass Theorem

Theorem 2.1 (Bolzano-Weierstrass in R). Every infinite bounded sequence (xn)n∈N in R has a convergent subse-
quence.

Intuitive “Proof”. Call n ∈ N a peak of (xn)n∈N if m > n =⇒ xn > xm.
Consider the following cases:

1. (xn)n∈N has infinitely many peaks n1 < n2 < n3 < . . . .
Then (xnj )j∈N is monotonically decreasing and bounded below. It is thereby convergent by the monotone
convergence theorem.

2. (xn)n∈N has finitely many peaks. Let N be the last peak and let n1 = N + 1.
n1 is not a peak =⇒ ∃n2 > n1 such that xn2

≥ xn1
.

n2 is not a peak =⇒ ∃n3 > n2 such that xn3 ≥ xn2 and so forth.
Then (xnj )j∈N is a bounded monotonically increasing sequence. It is convergent by the bounded convergence
theorem.

3. (xn)n∈N has no peaks. Let N = −1. The argument provided in 2 applies.

Theorem 2.2 (Bolzano-Weierstrass). Every infinite bounded sequence (xn)n∈N in Rn has a convergent subsequence.

Proof. We repeatedly apply Theorem 2.1 to the dimensions of (xn)n∈N to construct such a sequence.

• The first dimension of (xn)n∈N is a bounded sequence in R. Apply Theorem 2.1 to the first dimension of
(xn)n∈N to obtain a subsequence (xni

)i∈N whose first coordinate converges.

• The second dimension of (xni)i∈N is a bounded sequence in R. Apply Theorem 2.1 to the second dimension of
(xni

)i∈N to obtain a sequence (xk)k∈N whose first and second coordinates converges. (xk)k∈N is a subsequence
of (xni

)i∈N and thus a subsequence of (xn)n∈N.

• . . .

Iterate this process to obtain a subsequence of (xn)n∈N that converges in all of its n dimensions. This sequence is a
convergent subsequence of (xn)n∈N.

3 Contraction Mappings

Definition 3.1 (Contraction Mapping). Let (X, dX) be a metric space. A function f : X → X is called a contraction
mapping on X if

∃β ∈ [0, 1) such that ∀x, y ∈ X : dX(f(x), f(y)) ≤ βdX(x, y)

Example 3.1 (Example). A simple example for a contraction mapping is f(x) = a+ bx for b ∈ [0, 1).

Example 3.2 (Counterexample). Let f : R≥0 → R≥0 be given by f(x) = x
(
1− 1

1+x

)
.

Observe that this function shrinks distances between points. Wlog1, let y > x

|f(y)− f(x)| = y

(
1− 1

1 + y

)
− x

(
1− 1

1 + x

)
< y − x = |y − x|

⇐⇒ x

1 + x
<

y

1 + y
⇐⇒ x(1 + y) < y(1 + x) ⇐⇒ x < y ✓

1without loss of generality
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Then let y = x+ 1 and thus |y − x| = 1

lim
x→∞

|f(y)− f(x)| = lim
x→∞

|y
(
1− 1

1 + y

)
− x

(
1− 1

1 + x

)
|

= lim
x→∞

(x+ 1)

(
1− 1

2 + x

)
− x

(
1− 1

1 + x

)
= lim

x→∞

1

x+ 2
− 1

x+ 1
+ 1 = 1

Even though f shrinks distances, its Lipschitz constant is not bounded away from one. Thus, it is not a contraction
mapping.

Definition 3.2 (Fixed Point). Let f : X → Y be a function from X to Y . We say x ∈ X is a fixed point of f if
f(x) = x.

Theorem 3.1 (Banach Fixed Point Theorem). Let (X, dX) be a non-empty complete metric space. Let f : X → X
be a contraction mapping on X. Then f has a unique fixed point x∗ in X.

Proof. Choose x0 ∈ X arbitrarily. Define the sequence (xn)n∈N recursively by: ∀n ∈ N0 : xn+1 = f(xn). Note the
following statement, which follows from iterated application of the contraction mapping definition.

dX(xn+1, xn) ≤ βndX(x1, x0)

Next, we show that (xn)n∈N is a Cauchy sequence. Let m,n ∈ N and wlog m > n

dX(xm, xn)
∆−ineq.

≤
m−1∑
i=n

dX(xi, xi+1) ≤
m−1∑
i=n

βidX(x0, x1) = βndX(x0, x1)

m−n−1∑
i=0

βi

≤ βndX(x0, x1)

∞∑
i=0

βi = βndX(x0, x1)
1

1− β

Choose ϵ > 0 arbitrary. Then

∃Nϵ ∈ N such that βNϵ
dX(x0, x1)

1− β
< ϵ

and thus
∀m,n > Nϵ : dX(xm, xn) < ϵ

Therefore, (xn)n∈N is a Cauchy sequence. Since (X, dX) is complete, (xn)n∈N converges in (X, dX).

Let x∗ = limn→∞ xn.

dX(x∗, f(x∗)) ≤ dX(x∗, xm) + dX(xm, f(x∗)) ≤ dX(x∗, xm) + βdX(xm−1, x
∗)

But
lim

m→∞
dX(x∗, xm) = 0

Thus, we can bound dX(x∗, f(x∗)) by arbitrarily small positive values. Thus, dX(x∗, f(x∗)) = 0 meaning that x∗ is
a fixed point of f .

Assume (for the sake of contradiction) that there is a second fixed point; let’s call it x∗∗.

dX(x∗, x∗∗) = dX(f(x∗), f(x∗∗)) ≤ βdX(x∗, x∗∗)

Contradiction! Thus x∗ has to be the unique fixed point of f .

Example 3.3 (Dynamic Programming). Don’t worry!

You’ll see this in much more detail during your Macro class! So I will leave out all the nuance here. Let Cb(R) be
the space of continuous and bounded functions on the real numbers. Let T : Cb(R) → Cb(R) be defined pointwise by:

T [v](x) = max
z∈Γ(x)

(u(x− z) + βv(z))

where Γ is some (feasibility)-correspondence.

Then we can show (under some conditions) that T is a contraction mapping on Cb(R). It thus has a fixed point,
which will be useful in A LOT of economic problems. (Dynamic Optimization)
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4 Convergence of Functions

Definition 4.1 (Pointwise Convergence). Let (fn)n∈N with f : R → R be a sequence of functions. We say that fn
converges pointwise to some function f : R → R if:

∀x ∈ R : lim
n→∞

fn(x) = f(x)

Definition 4.2 (Uniform Convergence). Let (fn)n∈N with f : R → R be a sequence of functions. We say that fn
converges uniformly to some function f : R → R if:

lim
n→∞

sup
x∈R

|fn(x)− f(x)| = 0

Example 4.1 (Pointwise but not Uniform Convergence). Let fn : [0, 1) → [0, 1) be given by fn(x) = xn. Then fn
converges pointwise to f(x) = 0. However, fn does not converge uniformly.

Proof. Take x ∈ [0, 1) arbitrarily. Then limn→∞ xn = 0. Thus fn converges pointwise to f(x) = 0.

f is the only candidate for uniform convergence. However,

∀n ∈ N : sup
x∈[0,1)

|xn − 0| = 1

Thus, fn does not converge uniformly.
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