Handout 4 - ECON703 (Fall 2023)

1 Cluster Points and Squeeze-Theorem

Definition 1.1 (Cluster Point / Accumulation Point). Let (X, d_X) be some metric space and $(x_n)_{n \in \mathbb{N}}$ be some sequence in X. We say that $y \in X$ is a cluster point of $(x_n)_{n \in \mathbb{N}}$ if $(x_n)_{n \in \mathbb{N}}$ has a subsequence converging to y.

Theorem 1.1 (Supremum of the Set of Cluster Points). Let (X, d_X) be a metric space, $(x_n)_{n \in \mathbb{N}}$ be a bounded¹ sequence in X and \mathbb{Y} be the set of cluster points of $(x_n)_{n \in \mathbb{N}}$. Then $\sup \mathbb{Y} = \limsup_{n \to \infty} x_n$.

Proof. Let's remind ourselves of the definition of the limit superior:

$$b_n = \sup\{x_k \mid k \ge n\}$$
 i.e. $\lim_{n \to \infty} b_n = \limsup_{n \to \infty} x_n$

Then (prove this as an exercise),

$$\exists (x_{n_i})_{i \in \mathbb{N}} \quad \text{such that} \quad \lim_{i \to \infty} x_{n_i} = \limsup_{n \to \infty} x_n$$

and thus

 $\limsup_{n \to \infty} x_n \in \mathbb{Y} \quad \text{which gives us} \quad \sup \mathbb{Y} \ge \limsup_{n \to \infty} x_n$

Let $(x_{n_k})_{k\in\mathbb{N}}$ be a convergent subsequence of $(x_n)_{n\in\mathbb{N}}$. Then we have $\lim_{k\to\infty} x_{n_k} = x^* \in \mathbb{Y}$. Then clearly

$$\forall k \in \mathbb{N} : x_{n_k} \le b_n$$

But then, this extends to the limit:

$$x^* = \lim_{k \to \infty} x_{n_k} \le \lim_{k \to \infty} b_{n_k} = \limsup_{n \to \infty} x_n$$

and thus $\forall y \in \mathbb{Y} : y \leq \limsup_{n \to \infty} x_n$.

Symmetrically, this applies to the limit inferior of this sequence as a lower bound of \mathbb{Y} .

Theorem 1.2 (Squeeze-Theorem / Sandwich Theorem). Let $f : [a,b] \to \mathbb{R}$, $g : [a,b] \to \mathbb{R}$ and $h : [a,b] \to \mathbb{R}$ and $c \in [a,b]$. We can also make this work if f, g and h are only defined on $[a,b] \setminus \{c\}$. Assume that

$$\forall x \in [a, b] \setminus \{c\} : \quad g(x) \le f(x) \le h(x)$$

and

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$

Then $\lim_{x \to c} f(x) = L$.

Proof.

$$\begin{split} L &= \lim_{x \to c} g(x) \leq \liminf_{x \to c} f(x) \leq \limsup_{x \to c} f(x) \leq \lim_{x \to c} h(x) = L \\ \Longrightarrow &\lim_{x \to c} \inf_{x \to c} f(x) = \limsup_{x \to c} f(x) = L \\ \Longrightarrow &\lim_{x \to c} f(x) = L \end{split}$$

The second implication follows from Homework Problem 14.

¹We can make this work with unbounded sequences, but then $\limsup_{n\to\infty} x_n = \infty$ becomes a possibility.

Example 1.1 (Strange Sine Function). Consider the function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ with $f(x) = x^2 \sin(\frac{1}{x})$. Then since $\sin(x) \in [-1, 1]$, we have:

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$$

Then we can find the following limits:

$$\lim_{x \to 0} -x^2 = 0 \quad and \quad \lim_{x \to 0} x^2 = 0$$

to use the squeeze theorem to conclude that $\lim_{x\to 0} f(x) = 0$.

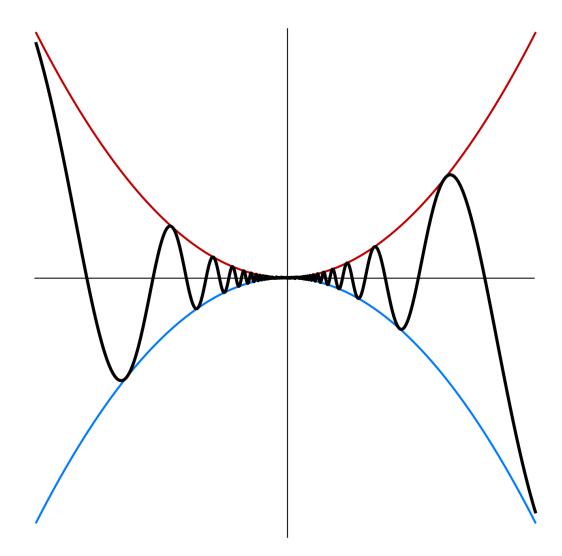


Figure 1: Source: https://en.wikipedia.org/wiki/File:Inst_satsen.png

2 Lipschitz-Continuity

Definition 2.1 (Lipschitz-Continuity). Let (X, d_X) and (Y, d_Y) be two metric spaces. We say a function $f : X \to Y$ is Lipschitz continuous if

 $\exists K \in \mathbb{R}_{\geq 0}$ such that $\forall x, x' \in X : d_Y(f(x), f(x')) \leq K d_X(x, x')$

We call any such K a Lipschitz constant of f and the smallest such K the dilation of f.

Example 2.1 (Absolute Value). The function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = |x| is Lipschitz continuous with dilation 1.

Theorem 2.1 (Lipschitz-Continuous Functions are Continuous). Let (X, d_X) and (Y, d_Y) be two metric spaces. Let $f: X \to Y$ be a Lipschitz continuous function with dilation $K \in \mathbb{R}$. Then f is continuous.

Proof. Since f is Lipschitz continuous, we know that

$$\forall x, x' \in X : d_Y(f(x), f(x')) \le K d_X(x, x')$$

Choose $\epsilon > 0$ arbitrary and set $\delta = \frac{\epsilon}{K}$. Then

$$d_X(x,x') < \delta \implies d_X(x,x') < \frac{\epsilon}{K} \implies Kd_X(x,x') < \epsilon \implies d_Y(f(x),f(x')) < \epsilon$$

And thus, f is continuous.

3 Continuity

Theorem 3.1 (Sequence Definition of Continuity). Let (X, d_X) and (Y, d_Y) be two metric spaces and $f : X \to Y$. f is continuous at $x \in X$ if and only if

$$\forall (x_n)_{n \in \mathbb{N}} \quad with \quad \lim_{n \to \infty} x_n = x : \quad \lim_{n \to \infty} f(x_n) = f(x)$$

Proof. ² **Step 1**: if this property holds, f is continuous at x

Let's show the contrapositive, i.e., if the Epsilon-Delta Definition does not hold at x, then the above sequence property is violated. Thus, assume that f is not continuous at x, i.e.

$$\exists \epsilon > 0$$
 such that $\forall \delta > 0 \exists x' \in X$ with $d_X(x', x) < \delta \land d_Y(f(x'), f(x)) \ge \epsilon$

Let ϵ_0 be the $\epsilon > 0$ at which our continuity definition is violated. Now consider the following sequences

$$(\delta_i)_{i \in \mathbb{N}}$$
 with $\delta_i = 2^{-i}$

and

$$(x_i)_{i \in \mathbb{N}}$$
 with $d_X(x, x_i) < \delta_i \land d_Y(f(x_i), f(x)) \ge \epsilon_0$

But then

$$\lim_{i \to \infty} x_i = x \quad \text{and} \quad \lim_{i \to \infty} f(x_i) \neq f(x)$$

And thus, the property under investigation is violated.

Step 2: if f is continuous at x, this property holds

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence with $\lim_{n\to\infty} x_n = x$ and choose an arbitrary $\epsilon > 0$. Since f is continuous at x we have

$$\exists \delta > 0$$
 such that $\forall x' \in X$ with $d_X(x, x') < \delta : d_Y(f(x), f(x')) < \epsilon$

But since $\lim_{n\to\infty} x_n = x$, we have

$$\exists N_{\delta} \in \mathbb{N}$$
 such that $\forall n > N_{\delta} : d_X(x_n, x) < \delta$

and thus

$$\forall n > N_{\delta} : d_Y(f(x_n), f(x)) < \epsilon$$

 $\lim_{n \to \infty} f(x_n) = f(x)$

But then