
Handout 5 - ECON703 (Fall 2023)

1 Vector Spaces and Norms

In the following, whenever we use the term field (F), you can think of R together with our usual addition and
multiplication. We can define many of these objects more generally, but let’s stay in the reals for now.

Definition 1.1 (Vector Space). A vector space (V,+V, ·V) over a field F (with addition +F and multiplication ·F) is
a non-empty set V together with two binary operations +V : V× V → V and ·V : F× V → V such that the following
properties hold.

• Associativity of Vector Addition:

∀u, v, w ∈ V : u+ (v + w) = (u+ v) + w

• Commutativity of Vector Addition:
∀u, v ∈ V : u+ v = v + u

• Existence of an Identity Element of Vector Addition:

∃0V ∈ V s.t. ∀v ∈ V : v + 0V = v

• Existence of Inverse Elements of Vector Addition:

∀v ∈ V ∃(−v) ∈ V s.t. v + (−v) = 0V

• Compatibility of Scalar Multiplication with Field Multiplication:

∀v ∈ V ∀λ, µ ∈ F : λ ·V (µ ·V v) = (λ ·F µ) ·V v

• Existence of an Identity Element of Scalar Multiplication:

∀v ∈ V : 1F ·V v = v

• Distributivity of Scalar Multiplication w.r.t. Vector Addition:

∀u, v ∈ V ∀λ ∈ F : λ ·V (u+V v) = λ ·V v +V λ ·V u

• Distributivity of Scalar Multiplication w.r.t. Field Addition:

∀v ∈ V ∀λ, µ ∈ F : (λ+F µ) ·V v = λ ·V v +V µ ·V v

Example 1.1 (Two-Dimensional Real Vectors). The set of all ordered pairs of real numbers, i.e., R2 together with
component-wise addition and scalar multiplication, is a vector space over R.

+ : R2 × R2 → R2 defined by (x, y) + (a, b) = (x+ a, y + b)

· : R× R2 → R2 defined by λ · (x, y) = (λx, λy)

Proof. Check the properties...
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Definition 1.2 (Norm). A function || · || : V → R from a vector space V to the underlying field R is called a norm
if it fulfills the following properties.

1. Triangle Inequality:
∀u, v ∈ V : ||u+ v|| ≤ ||u||+ ||v||

2. Absolute Homogeneity:
∀v ∈ V, λ ∈ F : ||λv|| = |λ| ||v||

3. Positive Definiteness:
||v|| = 0F =⇒ v = 0V

A function that fulfills properties 1 and 2 is called a seminorm.

Example 1.2 (ℓp-Norm). For p ∈ [1,∞), the following formula defines the ℓp-norm.

||x||p =

(
n∑

i=1

|xi|p
) 1

p

This is a norm on an n-dimensional Euclidean space.

Theorem 1.1 (Distance induced by a Norm). A norm || · || : V → R on a vector space (V,+V, ·V) induces a distance
on (V,+V, ·V) as follows:

d(x, y) = ||x− y||

Proof. Check the properties of a distance:

• ∀v ∈ V : d(v, v) = 0 Holds by positive definiteness of the underlying norm ✓

• Positivity: Holds by positivity of the underlying norm ✓

• Symmetry: Holds by commutativity of vector space addition ✓

• Triangle Inequality: Let x, y, z ∈ V

d(x, y) = ||y − x|| = ||y − z + z − x|| ≤ ||y − z||+ ||z − x|| = d(y, z) + d(z, x) ✓

2 Inner Products and the Cauchy-Schwarz Inequality

Definition 2.1 (Inner Product). An inner product on a vector space V over R is a function ⟨·, ·⟩ : V × V → R
satisfying the following properties.

• Symmetry: ∀v, u ∈ V : ⟨v, u⟩ = ⟨u, v⟩

• Linearity in the first Argument: ∀u, v, w ∈ V ∀λ, µ ∈ F : ⟨λv + µu,w⟩ = λ⟨u,w⟩+ µ⟨v, w⟩

• Positive Definiteness: ∀v ∈ V : (v ̸= 0) =⇒ (⟨v, v⟩ > 0)
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Example 2.1 (Canonical Inner Product on Euclidean Space). The canonical inner product on Rn, ⟨·, ·⟩ : Rn×Rn → R,
is given by

⟨x, y⟩ =
n∑

i=1

xiyi

Proof. Check the properties of the inner product definition.

• Conjugate Symmetry: Holds ✓

• Linearity in the first Argument: Holds ✓

• Positive Definiteness: Holds ✓

Definition 2.2 (Inner Product Space). An inner product space is a vector space V over some field F together with
an inner product ⟨·, ·⟩ : V× V → F.

Theorem 2.1 (Cauchy-Schwarz Inequality). Let (V, ⟨·, ·⟩) be an inner product space. Then

∀u, v ∈ V : |⟨u, v⟩|2 ≤ ⟨u, u⟩⟨v, v⟩

In Euclidean space with the standard inner product, the Cauchy-Schwarz inequality becomes:(
n∑

i=1

uivi

)2

≤

(
n∑

i=1

u2
i

)(
n∑

i=1

v2i

)

with equality if and only if u and v are linearly dependent.

Proof. Due to time constraints: see https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality#Proofs

3 The Space of Continuous and Bounded Functions

Definition 3.1 (Uniformly Bounded Set of Functions). Let X be an arbitrary set and F = {fi : X → R | i ∈ I} be
a set of functions indexed by some index set I. We say that F is bounded uniformly if

∃M ∈ R such that ∀i ∈ I ∀x ∈ X : |fi(x)| ≤ M

Definition 3.2 (Space of Continuous and Bounded Functions). The space of continuous and bounded functions
from a set X ⊂ Rn to R, denoted by Cb(X), is defined as the vector space consisting of the set

{f : X → R | fcontinuous and bounded}

together with pointwise addition and scalar multiplication.

+ : Cb(X)× Cb(X) → Cb(X) given by ∀f, g ∈ Cb(X) ∀x ∈ X : (f + g)(x) = f(x) + g(x)

· : R× Cb(X) → Cb(X) given by ∀f ∈ Cb(X) ∀λ ∈ R ∀x ∈ X : (λf)(x) = λf(x)

One important thing to note is that not all of these functions have to be bounded by the same bound M . In fact, if
we assume that they are, this is not a vector space.

Theorem 3.1 (The space of Continuous and Bounded Functions with the sup-norm is a Complete Metric Space).
Cb(X) together with the operations defined above and the distance induced by the sup-norm

d(f, g) = sup
x∈X

|g(x)− f(x)|

is a complete metric space.
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Proof. Let fi : X → R be a Cauchy sequence with respect to the sup-distance, i.e.

∀ϵ > 0 ∃Nϵ ∈ N such that ∀n,m > Nϵ : sup
x∈X

|fn(x)− fm(x)| < ϵ

Then ∀x ∈ X the sequence (fi(x))i∈N is a Cauchy sequence in R and thus convergent. That means that the pointwise
limit of our function sequence exists. Let f : X → R be the pointwise limit of fi, i.e.

∀x ∈ X : f(x) = lim
i→∞

fi(x)

This will be our candidate for the limit of our function sequence in the sup-distance.

Uniform Convergence:

∀ϵ > 0 ∃Nϵ ∈ N such that ∀n,m > Nϵ : sup
x∈X

|fn(x)− fm(x)| < ϵ

and thus, by linearity of the absolute value distance, we have

∀x ∈ X : |f(x)− fm(x)| = | lim
i→∞

fi(x)− fm(x)| = lim
i→∞

|fi(x)− fm(x)| ≤ ϵ

But then
∀m > Nϵ : sup

x∈X
|f(x)− fm(x)| ≤ ϵ

and thus, we have uniform convergence.

Boundedness of f :
Set ϵ = 1

2 and choose N ∈ N such that

∀m,n ≥ N : sup
x∈X

|fn(x)− fm(x)| < 1

2

Then using the argument used for uniform convergence, we get

∀x ∈ X : |f(x)| ≤ |f(x)− fN (x)|+ |fN (x)| ≤ sup
x∈X

|f(x)− fN (x)|+ sup
x∈X

|fN (x)|

≤ 1

2
+ sup

x∈X
|fN (x)|

And thus, f is bounded.

Continuity of f :
Choose ϵ > 0 arbitrarily and let a ∈ X be some point in our domain. Then by uniform convergence to f we have

∃Nϵ ∈ N such that ∀n > Nϵ : sup
x∈X

|fn(x)− f(x)| < ϵ

3

Since ∀n ∈ N fn is continuous at a we have

∃δ > 0 such that |x− a| < δ =⇒ |fn(x)− fn(a)| <
ϵ

3

Combining these, we can obtain the following for sufficiently large values of n:

∀x ∈ X : |x− a| < δ =⇒ |f(x)− f(a)| ≤ |fn(x)− f(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| < ϵ

and thus f is continuous at a. Since a was chosen arbitrarily, f is continuous.
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