Handout 6 - ECON703 (Fall 2023)

1 Lattices and Tarski Fixed Point Theorem

Definition 1.1 (Partial Order). A partial order \preceq on a set X is a relation on $X \times X$ fulfilling the following properties:

1. Reflexivity: $\forall x \in X: x \preceq x$
2. Antisymmetry: $\forall x, y \in X:(x \preceq y \wedge y \preceq x) \Longrightarrow(x=y)$
3. Transitivity: $\forall x, y, z \in X:(x \preceq y \wedge y \preceq z) \Longrightarrow(x \preceq z)$

A partially ordered set is an ordered pair (X, \preceq) of a set X and a partial order \preceq on X.
Definition 1.2 (Lattice). A partially ordered set (X, \preceq) is called a lattice if

$$
\begin{aligned}
& \forall x, x^{\prime} \in X: \exists!\bar{x} \in X \text { s.t. } \bar{x}=\sup \left\{x, x^{\prime}\right\} \\
& \forall x, x^{\prime} \in X: \exists!\underline{x} \in X \text { s.t. } \underline{x}=\inf \left\{x, x^{\prime}\right\}
\end{aligned}
$$

Example 1.1 (Discrete Lattice). Consider the following partially ordered set (X, \preceq), where

$$
X=\{(0,0),(0,1),(1,0),(1,1)\} \subset \mathbb{R}^{2}
$$

and

$$
\forall x, y \in X: \quad(x \preceq y) \Longleftrightarrow\left(y_{1} \geq x_{1} \wedge y_{2} \geq x_{2}\right)
$$

Then (X, \preceq) is a lattice.
Definition 1.3 (Complete Lattice). A lattice (X, \preceq) is called complete if every subset of (X, \preceq) has a supremum and infimum.

Theorem 1.1 (Tarski Fixed-Point Theorem / Knaster-Tarski Theorem). Let (X, \preceq) be a complete lattice and $f: X \rightarrow X$ be a monotonic function with respect to \preceq. Then, the set of fixed points of f on X forms a complete lattice under \preceq.

Proof. See https://eml.berkeley.edu/~fechenique/published/pftarski.pdf for a proof of the theorem.

2 Convex Sets

Definition 2.1 (Convex Set). A subset of Euclidean space $X \subset \mathbb{R}^{n}$ is called convex, if

$$
\forall x, y \in X \forall \lambda \in[0,1]: \lambda x+(1-\lambda) y \in X
$$

There is no such thing as a concave set.

Figure 1: Convex Set (left) and non-convex set (right)

3 (Quasi-)Convex Functions

Definition 3.1 (Convex / Concave Function). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function from \mathbb{R}^{n} to \mathbb{R}. f is called concave if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in[0,1]: f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)
$$

It is called convex if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in[0,1]: f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Figure 2: Example of Concave Function
Definition 3.2 (Strictly Convex / Strictly Concave Function). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function from \mathbb{R}^{n} to \mathbb{R}. f is called strictly concave if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in(0,1): f(\lambda x+(1-\lambda) y)>\lambda f(x)+(1-\lambda) f(y)
$$

It is called strictly convex if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in(0,1): f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

Definition 3.3 (Quasiconvex / Quasiconcave Function). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function from \mathbb{R}^{n} to \mathbb{R}. f is called quasi-concave if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in[0,1]: f(\lambda x+(1-\lambda) y) \geq \min \{f(x), f(y)\}
$$

It is called quasi-convex if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in[0,1]: f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}
$$

Definition 3.4 (Strictly Quasiconvex / Strictly Quasiconcave Function). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function from \mathbb{R}^{n} to \mathbb{R}. f is called strictly quasi-concave if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in(0,1): f(\lambda x+(1-\lambda) y)>\min \{f(x), f(y)\}
$$

It is called strictly quasi-convex if

$$
\forall x, y \in \mathbb{R}^{n} \forall \lambda \in(0,1): f(\lambda x+(1-\lambda) y)<\max \{f(x), f(y)\}
$$

Figure 3: Example of Strictly Concave Function

Figure 4: Example of a Strictly Quasiconvex Function

