Handout 6 - ECON703 (Fall 2023)

1 Lattices and Tarski Fixed Point Theorem

Definition 1.1 (Partial Order). A partial order \leq on a set X is a relation on $X \times X$ fulfilling the following properties:

- 1. **Reflexivity**: $\forall x \in X : x \leq x$
- 2. Antisymmetry: $\forall x, y \in X : (x \leq y \land y \leq x) \implies (x = y)$
- 3. Transitivity: $\forall x, y, z \in X : (x \leq y \land y \leq z) \implies (x \leq z)$

A partially ordered set is an ordered pair (X, \preceq) of a set X and a partial order \preceq on X.

Definition 1.2 (Lattice). A partially ordered set (X, \preceq) is called a lattice if

 $\forall x, x' \in X : \exists ! \overline{x} \in X \ s.t. \ \overline{x} = \sup\{x, x'\} \\ \forall x, x' \in X : \exists ! \underline{x} \in X \ s.t. \ \underline{x} = \inf\{x, x'\}$

Example 1.1 (Discrete Lattice). Consider the following partially ordered set (X, \preceq) , where

$$X = \{(0,0), (0,1), (1,0), (1,1)\} \subset \mathbb{R}^2$$

and

$$\forall x, y \in X : (x \leq y) \iff (y_1 \geq x_1 \land y_2 \geq x_2)$$

Then (X, \preceq) is a lattice.

Definition 1.3 (Complete Lattice). A lattice (X, \preceq) is called complete if every subset of (X, \preceq) has a supremum and infimum.

Theorem 1.1 (Tarski Fixed-Point Theorem / Knaster-Tarski Theorem). Let (X, \preceq) be a complete lattice and $f: X \to X$ be a monotonic function with respect to \preceq . Then, the set of fixed points of f on X forms a complete lattice under \preceq .

Proof. See https://eml.berkeley.edu/~fechenique/published/pftarski.pdf for a proof of the theorem.

2 Convex Sets

Definition 2.1 (Convex Set). A subset of Euclidean space $X \subset \mathbb{R}^n$ is called convex, if

$$\forall x, y \in X \ \forall \lambda \in [0, 1] : \ \lambda x + (1 - \lambda)y \in X$$

There is no such thing as a concave set.

Figure 1: Convex Set (left) and non-convex set (right)

3 (Quasi-)Convex Functions

Definition 3.1 (Convex / Concave Function). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function from \mathbb{R}^n to \mathbb{R} . f is called concave if

$$\forall x, y \in \mathbb{R}^n \ \forall \lambda \in [0,1]: \ f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y)$$

It is called convex if

$$\forall x, y \in \mathbb{R}^n \ \forall \lambda \in [0, 1]: \ f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Figure 2: Example of Concave Function

Definition 3.2 (Strictly Convex / Strictly Concave Function). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function from \mathbb{R}^n to \mathbb{R} . f is called strictly concave if

$$\forall x, y \in \mathbb{R}^n \,\forall \lambda \in (0, 1): \, f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)$$

It is called strictly convex if

$$\forall x, y \in \mathbb{R}^n \, \forall \lambda \in (0, 1): \, f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

Definition 3.3 (Quasiconvex / Quasiconcave Function). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function from \mathbb{R}^n to \mathbb{R} . f is called quasi-concave if

$$\forall x, y \in \mathbb{R}^n \ \forall \lambda \in [0, 1]: \ f(\lambda x + (1 - \lambda)y) \ge \min\{f(x), f(y)\}$$

It is called quasi-convex if

$$\forall x, y \in \mathbb{R}^n \,\forall \lambda \in [0, 1]: \, f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}$$

Definition 3.4 (Strictly Quasiconvex / Strictly Quasiconcave Function). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function from \mathbb{R}^n to \mathbb{R} . f is called strictly quasi-concave if

$$\forall x, y \in \mathbb{R}^n \,\forall \lambda \in (0, 1): \, f(\lambda x + (1 - \lambda)y) > \min\{f(x), f(y)\}$$

It is called strictly quasi-convex if

$$\forall x, y \in \mathbb{R}^n \ \forall \lambda \in (0, 1): \ f(\lambda x + (1 - \lambda)y) < \max\{f(x), f(y)\}\$$

Figure 3: Example of Strictly Concave Function

Figure 4: Example of a Strictly Quasiconvex Function