Handout 9 - ECON703 (Fall 2023)

1 Derivatives of Functions with Multiple Arguments

Definition 1.1 (Gradient). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. The gradient of f at $a \in \mathbb{R}^n$, denoted $\nabla f(a)$, is defined as:

$$\nabla f(a) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

The gradient effectively generalizes the derivative for functions with multiple arguments.

Later, we will define the **Jacobian-Matrix** for vector-valued functions. The gradient is its equivalent for scalar-valued functions.

Example 1.1. Consider $f : \mathbb{R}^3 \to \mathbb{R}$ given by f(x, y, z) = xy + z. Then the gradient of f at a point (a, b, c) is

$$\nabla f(a,b,c) = \begin{bmatrix} b\\ a\\ 1 \end{bmatrix}$$

Definition 1.2 (Hessian). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function for which each second-order partial derivative exists. Then, the Hessian of f at $a \in \mathbb{R}^n$, denoted $H_f(a)$ or $D_f^2(a)$, is defined as

$$H_f(a) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(a) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(a) & \frac{\partial^2 f}{\partial x_2^2}(a) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(a) & \frac{\partial^2 f}{\partial x_n \partial x_2}(a) & \dots & \frac{\partial^2 f}{\partial x_n^2}(a) \end{bmatrix}$$

It is a natural equivalent of the second derivative for the case of a scalar-valued function.

Example 1.2. Consider $f : \mathbb{R}^3 \to \mathbb{R}$ given by f(x, y, z) = xy + z. Then the Hessian of f at a point (a, b, c) is

$$H_f(a,b,c) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

2 Extrema

Definition 2.1 (Global Extrema of Functions). Let $A \subset \mathbb{R}^n$ and $f : A \to \mathbb{R}$. We say that $f(\overline{a}) \in A$ is a global maximum of f on A if $\forall x \in A : f(\overline{a}) \geq f(x)$.

Analogously, we say that $f(\underline{a}) \in A$ is a global minimum of f on A if $\forall x \in A : f(\underline{a}) \leq f(x)$.

Definition 2.2 (Global Maximizer/Minimizer of a Function). Let $A \subset \mathbb{R}^n$ and $f : A \to \mathbb{R}$. We say that $\overline{a} \in A$ maximizes f on A, denoted $\overline{a} \in \arg \max_{x \in A} f(x)$, if $\forall x \in A : f(\overline{a}) \ge f(x)$.

Analogously, we say that $\underline{a} \in A$ minimizes f on A, denoted $\overline{a} \in \arg\min_{x \in A} f(x)$, if $\forall x \in A : f(\underline{a}) \leq f(x)$.

Note that both $\arg \max$ and $\arg \min$ are technically set-valued. However, in an abuse of notation, we often write statements such as $\overline{a} = \arg \max_{x \in A} f(x)$ if the $\arg \max$ is a singleton.

Definition 2.3 (Local Extrema of Functions). Let $A \subset \mathbb{R}^n$ and $f : A \to \mathbb{R}$. We say that $f(\overline{a}) \in A$ is a local maximum of f on A if $\exists r > 0$ s.t. $\forall x \in B_r(\overline{a}) : f(\overline{a}) \ge f(x)$.

Analogously, we say that $f(\underline{a}) \in A$ is a local minimum of f on A if $\exists r > 0$ s.t. $\forall x \in B_r(\underline{a}) : f(\underline{a}) \leq f(x)$.

Definition 2.4 (Local Maximizer/Minimizer of a Function). Let $A \subset \mathbb{R}^n$ and $f : A \to \mathbb{R}$. We say that $\overline{a} \in A$ locally maximizes f on A, if $\exists r > 0$ s.t. $\forall x \in B_r(\overline{a}) : f(\overline{a}) \ge f(x)$.

Analogously, we say that $f(\underline{a}) \in A$ locally minimizes f on A, if $\exists r > 0$ s.t. $\forall x \in B_r(\underline{a}) : f(\underline{a}) \leq f(x)$.

Definition 2.5 (Critical Points / First Order Conditions). Let $f : A \to \mathbb{R}$ for $A \subset \mathbb{R}^n$. A point $x^* \in int(A)$ is called a critical point of f if $\nabla(x^*) = 0$. $\nabla(x^*) = 0$ is often called the First Order Condition.

3 Karush-Kuhn-Tucker Optimization

To make sense of KKT-optimization theoretically, we would have to consider the question of **Dual Problems**. For those of you interested in the theoretical background, search for

- Theorem of Lagrange
- Theorem of Kuhn and Tucker

- Primal Problems and Dual Problems
- Duality Gap and Strong Duality

Sundaram, R. (1996). A First Course in Optimization Theory. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511804526

However, here we will think about how to apply the technique instead.

Definition 3.1 (The KKT Optimization Problem). Let $X \subset \mathbb{R}^n$ be a convex subset of Euclidean space. Let $f: X \to \mathbb{R}$ be the objective function. Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be the function corresponding to the inequality constraints. Let $h: \mathbb{R}^n \to \mathbb{R}^l$ be the function corresponding to the equality constraint.

The KKT-optimization problem is as follows:

 $\max_{x \in X} f(x) \quad subject \ to: \quad g(x) \le 0 \quad and \quad h(x) = 0$

We can form the corresponding Lagrangian function as follows:

$$\mathcal{L}(x,\mu,\lambda) = f(x) - \mu' g(x) - \lambda' h(x)$$

Definition 3.2 (The KKT Conditions). The Karush-Kuhn-Tucker conditions for a maximum at x^* are

• Stationarity:

$$0 = \nabla f(x^*) - \sum_{j=1}^l \lambda_j \nabla h_j(x^*) - \sum_{i=1}^m \mu_i \nabla g_i(x^*)$$

• Primal Feasibility:

$$\forall j = 1, \dots, l: h_j(x^*) = 0 \quad \forall i = 1, \dots, m: g_j(x^*) \le 0$$

• Dual Feasibility:

$$\forall i = 1, \dots, m : \ \mu_i \ge 0$$

• Complementary Slackness:

$$\sum_{i=1}^m \mu_i g_i(x^*) = 0$$

Figure 1: A visualization of a simple KKT-Problem

Example 3.1. Consider the following optimization problem:

$$\max_{(x,y)\in\mathbb{R}^2} xy \quad s.t. \quad x \ge 0 \quad \land \quad y \ge 0$$
$$\land \quad x + y \le 5$$

This gives us the Lagrangian

$$\mathcal{L} = xy - \lambda_1(-x) - \lambda_2(-y) - \lambda_3(x+y-5)$$
$$= xy + \lambda_1 x + \lambda_2 y - \lambda_3(x+y-5)$$

Forming the KKT-conditions gives us:

• Stationarity:

$$0 = y + \lambda_1 - \lambda_3$$
$$0 = x + \lambda_2 - \lambda_3$$

- Primal Feasibility:
- $x \ge 0 \quad \wedge \quad y \ge 0 \wedge \quad x+y \le 5$

- Dual Feasibility:
- $\lambda_1 \ge 0 \quad \wedge \quad \lambda_2 \ge 0 \quad \wedge \quad \lambda_3 \ge 0$
- Complementary Slackness:

$$\lambda_1 x = 0 \quad \land \quad \lambda_2 y = 0 \quad \land \quad \lambda_3 (x + y - 5) = 0$$

With these conditions, we can solve for a candidate.

So (x, y) = (2.5, 2.5) is our solution candidate.

Definition 3.3 (Constraint Qualification). There is a number of conditions called **Constraint Qualifications** that tell us settings in which an optimizer has to fulfill the KKT-conditions. They vary in complexity and applicability. And tell us when **Strong Duality** holds.

https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions#Regularity_conditions_(or_constraint_ qualifications)

Three common constraint qualifications are the following:

Definition 3.4 (Linearity Constraint Qualification). If all constraints are affine functions, no further criteria need to be met.

Definition 3.5 (Linear Independence Constraint Qualification). The gradients of the active inequality constraints (i.e. those binding in x^*) and the gradients of the equality constraints are linearly independent at x^* .

Definition 3.6 (Slater's Condition). For a convex problem, i.e., minimizing a convex function (maximizing a concave function) under convex inequality and linear equality constraints, there exists a point such that h(x) = 0 and $g_i(x) < 0$. In other words, if the feasible region has an interior point.

Example 3.2. In the previous example, all constraints were affine, so a solution to the maximization problem has to fulfill the KKT-conditions by Linearity Constraint Qualification. Our solution candidate is, thus, the maximizer.

A good source for the intuition behind KKT-optimization is: https://youtu.be/HIm3Z0L90Co?si=CNgGqExlD3WHXz4F. This is a video by a channel called "Arizona Math Camp" that I would highly recommend watching.